Comparative analysis of two-dimensional data-driven efficient frontier estimation algorithms

I. Yuskevich, R. Vingerhoeds, A. Golkar
{"title":"Comparative analysis of two-dimensional data-driven efficient frontier estimation algorithms","authors":"I. Yuskevich, R. Vingerhoeds, A. Golkar","doi":"10.1109/SYSENG.2018.8544456","DOIUrl":null,"url":null,"abstract":"In this paper we show how the mathematical apparatus developed originally in the field of econometrics and portfolio optimization can be utilized for purposes of conceptual design, requirements engineering and technology roadmapping. We compare popular frontier estimation models and propose an efficient and robust nonparametric estimation algorithm for two-dimensional frontier approximation. The proposed model allows to relax the convexity assumptions and thus enable estimating a broader range of possible technology frontier shapes compared to the state of the art. Using simulated datasets we show how the accuracy and the robustness of alternative methods such as Data Envelopment Analysis and nonparametric and parametric statistical models depend on the size of the dataset and on the shape of the frontier.","PeriodicalId":192753,"journal":{"name":"2018 IEEE International Systems Engineering Symposium (ISSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Systems Engineering Symposium (ISSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSENG.2018.8544456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we show how the mathematical apparatus developed originally in the field of econometrics and portfolio optimization can be utilized for purposes of conceptual design, requirements engineering and technology roadmapping. We compare popular frontier estimation models and propose an efficient and robust nonparametric estimation algorithm for two-dimensional frontier approximation. The proposed model allows to relax the convexity assumptions and thus enable estimating a broader range of possible technology frontier shapes compared to the state of the art. Using simulated datasets we show how the accuracy and the robustness of alternative methods such as Data Envelopment Analysis and nonparametric and parametric statistical models depend on the size of the dataset and on the shape of the frontier.
二维数据驱动的高效边界估计算法的比较分析
在本文中,我们展示了最初在计量经济学和投资组合优化领域开发的数学工具如何被用于概念设计、需求工程和技术路线图的目的。比较了常用的边界估计模型,提出了一种高效、鲁棒的二维边界逼近非参数估计算法。所提出的模型允许放松凸性假设,从而能够估计更广泛的可能的技术前沿形状,与目前的技术状态相比。使用模拟数据集,我们展示了数据包络分析和非参数和参数统计模型等替代方法的准确性和鲁棒性如何取决于数据集的大小和边界的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信