Adaptive tracking control for nonlinear systems by an adaptive model-based FNNs sliding mode control scheme

Yu‐Chen Lin, Tsung-Chih Lin, Yi-Chao Chen, I-chun Kuo
{"title":"Adaptive tracking control for nonlinear systems by an adaptive model-based FNNs sliding mode control scheme","authors":"Yu‐Chen Lin, Tsung-Chih Lin, Yi-Chao Chen, I-chun Kuo","doi":"10.1109/ICNSC.2017.8000188","DOIUrl":null,"url":null,"abstract":"This paper concerned with the adaptive tracking control problem of an adaptive model-based fuzzy-neural networks (FNNs) sliding mode control (AFSMC) scheme for a class of nonlinear systems, which are represented by Takagi-Sugeno (T-S) fuzzy model to express a nonlinear systems model. Then, an adaptive parameter estimator is proposed to estimate the unknown nonlinear system parameters. Considering the online estimating error from the estimation model and nonlinear system model, a state estimation based feedback controller is derived by the proposed adaptive FNNs sliding mode control scheme and free parameters can be updated online by adaptive laws based on Lyapunov stability theorem. The proposed control scheme can guarantee that the unknown nonlinear system output can track to the states of reference model for any desired input signals when the stability condition is satisfied. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed approaches.","PeriodicalId":145129,"journal":{"name":"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)","volume":"22 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2017.8000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper concerned with the adaptive tracking control problem of an adaptive model-based fuzzy-neural networks (FNNs) sliding mode control (AFSMC) scheme for a class of nonlinear systems, which are represented by Takagi-Sugeno (T-S) fuzzy model to express a nonlinear systems model. Then, an adaptive parameter estimator is proposed to estimate the unknown nonlinear system parameters. Considering the online estimating error from the estimation model and nonlinear system model, a state estimation based feedback controller is derived by the proposed adaptive FNNs sliding mode control scheme and free parameters can be updated online by adaptive laws based on Lyapunov stability theorem. The proposed control scheme can guarantee that the unknown nonlinear system output can track to the states of reference model for any desired input signals when the stability condition is satisfied. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed approaches.
采用基于自适应模型的fnn滑模控制方案对非线性系统进行自适应跟踪控制
针对一类以Takagi-Sugeno (T-S)模糊模型表示的非线性系统,研究了基于自适应模型的模糊神经网络(fnn)滑模控制(AFSMC)的自适应跟踪控制问题。然后,提出了一种自适应参数估计器来估计未知的非线性系统参数。考虑到估计模型和非线性系统模型的在线估计误差,利用所提出的自适应fnn滑模控制方案推导出基于状态估计的反馈控制器,并基于Lyapunov稳定性定理的自适应律在线更新自由参数。所提出的控制方案能够保证在满足稳定性条件的情况下,对于任意输入信号,未知非线性系统输出都能跟踪到参考模型的状态。最后,通过仿真实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信