On-line training algorithms for an induction motor stator flux neural observer

A. Nied, I. S. Seleme, G. G. Parma, B.R. de Menezes
{"title":"On-line training algorithms for an induction motor stator flux neural observer","authors":"A. Nied, I. S. Seleme, G. G. Parma, B.R. de Menezes","doi":"10.1109/IECON.2003.1279967","DOIUrl":null,"url":null,"abstract":"This work presents a neural network based stator flux observer. Although the network topology is a standard multilayer perceptron network, the training algorithms are new. This paper presents two on-line training algorithms, which are based on Variable Structure Systems (VSS) theory and Sliding Mode Control (SMC). The resulting observer shows good convergence velocity and robustness with respect to the induction motor parameters for both training algorithms tested.","PeriodicalId":403239,"journal":{"name":"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2003.1279967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work presents a neural network based stator flux observer. Although the network topology is a standard multilayer perceptron network, the training algorithms are new. This paper presents two on-line training algorithms, which are based on Variable Structure Systems (VSS) theory and Sliding Mode Control (SMC). The resulting observer shows good convergence velocity and robustness with respect to the induction motor parameters for both training algorithms tested.
感应电机定子磁链神经观测器的在线训练算法
提出了一种基于神经网络的定子磁链观测器。虽然网络拓扑是一个标准的多层感知器网络,但训练算法是新的。提出了两种基于变结构系统(VSS)理论和滑模控制(SMC)的在线训练算法。所得到的观测器对两种训练算法均表现出良好的收敛速度和对异步电机参数的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信