Evaluation of semantic role labeling based on lexical features using conditional random fields and support vector machine

K. Ravidhaa, S. Meena, R. S. Milton
{"title":"Evaluation of semantic role labeling based on lexical features using conditional random fields and support vector machine","authors":"K. Ravidhaa, S. Meena, R. S. Milton","doi":"10.1109/ICRTIT.2013.6844179","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to identify the semantic roles of arguments in a sentence based on lexicalized features even if less semantic information is available. The semantic role labeling task (SRL) involves identifying which groups of words act as arguments to a given predicate. These arguments must be labeled with their role with respect to the predicate, indicating how the proposition should be semantically interpreted. The approach mainly focuses on improving the task of SRL by adding the similar words and selectional preferences to the existing lexical features, thereby avoiding data sparsity problem. Addition of richer lexical information can improve SRL task even when very little syntactic knowledge is available in the input sentence. We analyze the performance of SRL which use a probabilistic graphical model (Conditional Random Field) and a machine learning model (Support Vector Machines). The statistical modelling is trained by CONLL-2004 Shared Task training data.","PeriodicalId":113531,"journal":{"name":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2013.6844179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main objective of this paper is to identify the semantic roles of arguments in a sentence based on lexicalized features even if less semantic information is available. The semantic role labeling task (SRL) involves identifying which groups of words act as arguments to a given predicate. These arguments must be labeled with their role with respect to the predicate, indicating how the proposition should be semantically interpreted. The approach mainly focuses on improving the task of SRL by adding the similar words and selectional preferences to the existing lexical features, thereby avoiding data sparsity problem. Addition of richer lexical information can improve SRL task even when very little syntactic knowledge is available in the input sentence. We analyze the performance of SRL which use a probabilistic graphical model (Conditional Random Field) and a machine learning model (Support Vector Machines). The statistical modelling is trained by CONLL-2004 Shared Task training data.
基于条件随机场和支持向量机的词法特征语义角色标注评价
本文的主要目的是在语义信息较少的情况下,基于词汇化特征识别句子中论点的语义角色。语义角色标记任务(SRL)涉及识别哪些单词组作为给定谓词的参数。这些参数必须标记为它们相对于谓词的角色,指示应该如何在语义上解释命题。该方法主要侧重于通过在现有的词法特征上添加相似词和选择偏好来改进SRL任务,从而避免数据稀疏性问题。添加更丰富的词汇信息可以改善SRL任务,即使在输入句子中可用的语法知识很少的情况下也是如此。我们使用概率图形模型(条件随机场)和机器学习模型(支持向量机)来分析SRL的性能。统计模型采用CONLL-2004共享任务训练数据进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信