Smart Microgrid QoS and Network Reliability Performance Improvement using Reinforcement Learning

Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra
{"title":"Smart Microgrid QoS and Network Reliability Performance Improvement using Reinforcement Learning","authors":"Niharika Singh, I. Elamvazuthi, P. Nallagownden, N. Badruddin, Firas Ousta, A. Jangra","doi":"10.1109/ICIAS49414.2021.9642596","DOIUrl":null,"url":null,"abstract":"A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Smart Microgrid consists of physical and communication layered networks. It provides communication services to each connected component and resource through multi-agent system. This paper proposes a reinforcement learning based methodology, Q-reinforcement Learning based Multi-agent based Bellmanford Routing (QRL-MABR), using multiple agents communicating over the microgrid network. It strengthens the decision-making core of the microgrid by improving Quality of service and network reliability of the smart microgrid. The performance analysis of the algorithm is tested over small-scale IEEE microgrid models i.e. IEEE 9 and IEEE 14. The work is tested and compared with four routing oriented decision-making algorithms, Open shortest path first (OSPF), Optimized link state routing (OLSR), Routing information protocol (RIP) and Multi-agent based Bellmanford routing (MABR). The results validate the productivity and learning capabilities of the proposed QRL-MABR algorithm.
基于强化学习的智能微电网QoS和网络可靠性性能改进
智能微电网由物理层和通信层网络组成。它通过多代理系统为每个被连接的组件和资源提供通信服务。本文提出了一种基于强化学习的方法,即基于q -强化学习的基于多智能体的Bellmanford路由(QRL-MABR),该方法使用多个智能体在微电网上通信。通过提高智能微电网的服务质量和网络可靠性,强化微电网的决策核心。在小规模的IEEE微电网模型(ieee9和ieee14)上测试了该算法的性能分析。并与开放最短路径优先(OSPF)、优化链路状态路由(OLSR)、路由信息协议(RIP)和基于多智能体的Bellmanford路由(MABR)四种面向路由的决策算法进行了测试和比较。结果验证了所提出的QRL-MABR算法的生产率和学习能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信