Lisnet: A Covid-19 Lung Infection Segmentation Network Based on Edge Supervision and Multi-Scale Context Aggregation

Jing Wang, Bicao Li, Jie Huang, Miaomiao Wei, Mengxing Song, Zongmin Wang
{"title":"Lisnet: A Covid-19 Lung Infection Segmentation Network Based on Edge Supervision and Multi-Scale Context Aggregation","authors":"Jing Wang, Bicao Li, Jie Huang, Miaomiao Wei, Mengxing Song, Zongmin Wang","doi":"10.1109/ICIP46576.2022.9897957","DOIUrl":null,"url":null,"abstract":"Corona Virus Disease 2019 (COVID-19) spread globally in early 2020, leading to a new health crisis. Automatic segmentation of lung infections from computed tomography (CT) images provides an important basis for early diagnosis of COVID-19 quickly. In this paper, we propose an effective COVID-19 Lung Infection Segmentation Network (LISNet) based on edge supervision and multi-scale context aggregation. More specifically, an Edge Supervision module is introduced to the feature extraction part to enhance the low contrast between lesions and normal tissues. In addition, the Multi-scale Feature Fusion module is added to enhance the segmentation ability of different scales Lesions. Finally, the Context Aggregation module is used to aggregate high- and low-level features and generate global information. Experiments demonstrate that our method outperforms other state-of-the-art methods on the public COVID-19 CT segmentation dataset.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Corona Virus Disease 2019 (COVID-19) spread globally in early 2020, leading to a new health crisis. Automatic segmentation of lung infections from computed tomography (CT) images provides an important basis for early diagnosis of COVID-19 quickly. In this paper, we propose an effective COVID-19 Lung Infection Segmentation Network (LISNet) based on edge supervision and multi-scale context aggregation. More specifically, an Edge Supervision module is introduced to the feature extraction part to enhance the low contrast between lesions and normal tissues. In addition, the Multi-scale Feature Fusion module is added to enhance the segmentation ability of different scales Lesions. Finally, the Context Aggregation module is used to aggregate high- and low-level features and generate global information. Experiments demonstrate that our method outperforms other state-of-the-art methods on the public COVID-19 CT segmentation dataset.
Lisnet:一种基于边缘监督和多尺度上下文聚合的Covid-19肺部感染分割网络
2019冠状病毒病(COVID-19)于2020年初在全球蔓延,引发了新的健康危机。CT图像中肺部感染的自动分割为快速早期诊断COVID-19提供了重要依据。本文提出了一种基于边缘监督和多尺度上下文聚合的新型冠状病毒肺炎肺部感染分割网络(LISNet)。具体来说,在特征提取部分引入边缘监督模块,增强病变与正常组织的低对比度。此外,增加了多尺度特征融合模块,增强了对不同尺度病灶的分割能力。最后,使用上下文聚合模块对高、低层特征进行聚合,生成全局信息。实验表明,我们的方法在公开的COVID-19 CT分割数据集上优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信