GCN-ALP: Addressing Matching Collisions in Anchor Link Prediction

Hao Gao, Yongqing Wang, Shanshan Lyu, Huawei Shen, Xueqi Cheng
{"title":"GCN-ALP: Addressing Matching Collisions in Anchor Link Prediction","authors":"Hao Gao, Yongqing Wang, Shanshan Lyu, Huawei Shen, Xueqi Cheng","doi":"10.1109/ICBK50248.2020.00065","DOIUrl":null,"url":null,"abstract":"Nowadays online users prefer to join multiple social media for the purpose of socialized online service. The problem anchor link prediction is formalized to link user data with the common ground on user profile, content and network structure across social networks. Most of the traditional works concentrated on learning matching function with explicit or implicit features on observed user data. However, the low quality of observed user data confuses the judgment on anchor links, resulting in the matching collision problem in practice. In this paper, we explore local structure consistency and then construct a matching graph in order to circumvent matching collisions. Furthermore, we propose graph convolution networks with mini-batch strategy, efficiently solving anchor link prediction on matching graph. The experimental results on three real application scenarios show the great potentials of our proposed method in both prediction accuracy and efficiency. In addition, the visualization of learned embeddings provides us a qualitative way to understand the inference of anchor links on the matching graph.","PeriodicalId":432857,"journal":{"name":"2020 IEEE International Conference on Knowledge Graph (ICKG)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Knowledge Graph (ICKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK50248.2020.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nowadays online users prefer to join multiple social media for the purpose of socialized online service. The problem anchor link prediction is formalized to link user data with the common ground on user profile, content and network structure across social networks. Most of the traditional works concentrated on learning matching function with explicit or implicit features on observed user data. However, the low quality of observed user data confuses the judgment on anchor links, resulting in the matching collision problem in practice. In this paper, we explore local structure consistency and then construct a matching graph in order to circumvent matching collisions. Furthermore, we propose graph convolution networks with mini-batch strategy, efficiently solving anchor link prediction on matching graph. The experimental results on three real application scenarios show the great potentials of our proposed method in both prediction accuracy and efficiency. In addition, the visualization of learned embeddings provides us a qualitative way to understand the inference of anchor links on the matching graph.
GCN-ALP:锚链预测中的匹配冲突寻址
现在的在线用户更喜欢加入多个社交媒体,以获得社会化的在线服务。将问题锚链接预测形式化,将用户数据与跨社交网络的用户资料、内容和网络结构的共同点联系起来。传统的工作大多集中在对观察到的用户数据学习具有显式或隐式特征的匹配函数。然而,由于观测到的用户数据质量较低,导致锚链接的判断混乱,在实践中导致了匹配冲突问题。本文首先探讨局部结构的一致性,然后构造匹配图以避免匹配冲突。在此基础上,提出了基于小批量策略的图卷积网络,有效地解决了匹配图上的锚链接预测问题。在三种实际应用场景下的实验结果表明,该方法在预测精度和效率方面都有很大的潜力。此外,学习嵌入的可视化为我们提供了一种定性的方法来理解匹配图上锚链接的推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信