An efficient method of detecting exudates in diabetic retinopathy: Using texture edge features

Priyadarshini Patil, Pooja Shettar, Prashant Narayankar, Mayur Patil
{"title":"An efficient method of detecting exudates in diabetic retinopathy: Using texture edge features","authors":"Priyadarshini Patil, Pooja Shettar, Prashant Narayankar, Mayur Patil","doi":"10.1109/ICACCI.2016.7732206","DOIUrl":null,"url":null,"abstract":"Ophthalmologists analyze fundus images of eye extensively as a non invasive diagnosis tool for various internal eye defects. Diabetic retinopathy is an eye complication specially seen in diabetic patients, causing damage to retina which may lead to blindness. The major symptoms of this disorder is the presence of exudates, a pus like fluid oozed from damaged blood vessels due to high blood sugar. This hardens on the retina of patient, leading to blindness. In this paper, we propose a methodology for automatic detection of exudates. We remove the non exudates like optic disc, blood vessels, and blood clots in two phases using Gradient Vector Flow Snake algorithm and region growing segmentation algorithm. This improves efficiency of detection by masking false exudates. Then, we detect exudates using Gabor filter texture edge detection based segmentation algorithm. To reduce computational complexity, only Gabor filters tuned to two higher frequencies and four orientations are used. We have implemented the proposed methodology on 850 test images. We have obtained a high efficiency of 87% true exudates.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Ophthalmologists analyze fundus images of eye extensively as a non invasive diagnosis tool for various internal eye defects. Diabetic retinopathy is an eye complication specially seen in diabetic patients, causing damage to retina which may lead to blindness. The major symptoms of this disorder is the presence of exudates, a pus like fluid oozed from damaged blood vessels due to high blood sugar. This hardens on the retina of patient, leading to blindness. In this paper, we propose a methodology for automatic detection of exudates. We remove the non exudates like optic disc, blood vessels, and blood clots in two phases using Gradient Vector Flow Snake algorithm and region growing segmentation algorithm. This improves efficiency of detection by masking false exudates. Then, we detect exudates using Gabor filter texture edge detection based segmentation algorithm. To reduce computational complexity, only Gabor filters tuned to two higher frequencies and four orientations are used. We have implemented the proposed methodology on 850 test images. We have obtained a high efficiency of 87% true exudates.
一种有效的糖尿病视网膜病变渗出物检测方法:利用纹理边缘特征
眼科医生广泛分析眼底图像,作为各种眼内缺陷的非侵入性诊断工具。糖尿病视网膜病变是糖尿病患者特有的一种眼部并发症,可引起视网膜损伤,进而导致失明。这种疾病的主要症状是渗出物的存在,这是一种由高血糖引起的从受损血管中渗出的脓状液体。这会使患者的视网膜硬化,导致失明。在本文中,我们提出了一种自动检测渗出液的方法。采用梯度矢量流Snake算法和区域增长分割算法分两阶段去除视盘、血管、血块等非渗出物。这通过掩盖假渗出物提高了检测效率。然后,我们使用基于Gabor滤波纹理边缘检测的分割算法检测渗出物。为了降低计算复杂度,只使用调到两个更高频率和四个方向的Gabor滤波器。我们已经在850个测试图像上实现了所提出的方法。我们获得了87%的真实渗出物的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信