{"title":"On the Capacity of Underwater Optical Wireless Communication Systems","authors":"Y. Rong, S. Nordholm, A. Duncan","doi":"10.1109/UComms50339.2021.9598156","DOIUrl":null,"url":null,"abstract":"In this paper, we first analyze the factors that affect the capacity of underwater optical wireless communication (UOWC) systems through deriving a new tight capacity upperbound. We find that the system capacity depends on the light wavelength in a complicated manner. Then we compare UOWC with the underwater acoustic communication (UAC) technology in terms of channel capacity, communication range, and energy efficiency. We show that UOWC requires a much lower energy-per-bit than UAC for short range communication. Finally, we study the multi-hop communication technique to extend the range of UOWC. The optimal number of hops is derived taking into account the cost of deploying relay nodes. Our study provides useful guidelines in designing a hybrid underwater acoustic/optical communication system which can achieve an increased range-rate product for underwater wireless communication.","PeriodicalId":371411,"journal":{"name":"2021 Fifth Underwater Communications and Networking Conference (UComms)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth Underwater Communications and Networking Conference (UComms)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UComms50339.2021.9598156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we first analyze the factors that affect the capacity of underwater optical wireless communication (UOWC) systems through deriving a new tight capacity upperbound. We find that the system capacity depends on the light wavelength in a complicated manner. Then we compare UOWC with the underwater acoustic communication (UAC) technology in terms of channel capacity, communication range, and energy efficiency. We show that UOWC requires a much lower energy-per-bit than UAC for short range communication. Finally, we study the multi-hop communication technique to extend the range of UOWC. The optimal number of hops is derived taking into account the cost of deploying relay nodes. Our study provides useful guidelines in designing a hybrid underwater acoustic/optical communication system which can achieve an increased range-rate product for underwater wireless communication.