{"title":"Over-Constrained Mechanisms Derived From RPRP Loops","authors":"K. Ting, Kuan-Lun Hsu","doi":"10.1115/DETC2018-85030","DOIUrl":null,"url":null,"abstract":"This paper addresses the assembly strategy capable of deriving a family of over-constrained mechanisms systematically. The modular approach is proposed. It treats the topological synthesis of over-constrained mechanisms as a systematical derivation rather than a random search. The result indicates that a family of over-constrained mechanisms can be constructed by combining legitimate modules. A spatial four-bar linkage containing two revolute joints (R) and two prismatic joints (P) is selected as the source-module for the purpose of demonstration. All mechanisms discovered in this paper were modeled and animated with computer aided design (CAD) software and their mobility were validated with input-output equations as well as computer simulations. The assembly strategy can serve as a self-contained library of over-constrained mechanisms.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper addresses the assembly strategy capable of deriving a family of over-constrained mechanisms systematically. The modular approach is proposed. It treats the topological synthesis of over-constrained mechanisms as a systematical derivation rather than a random search. The result indicates that a family of over-constrained mechanisms can be constructed by combining legitimate modules. A spatial four-bar linkage containing two revolute joints (R) and two prismatic joints (P) is selected as the source-module for the purpose of demonstration. All mechanisms discovered in this paper were modeled and animated with computer aided design (CAD) software and their mobility were validated with input-output equations as well as computer simulations. The assembly strategy can serve as a self-contained library of over-constrained mechanisms.