Fault diagnosis based on intelligent particle filter

Wei Sun, Jian Hou
{"title":"Fault diagnosis based on intelligent particle filter","authors":"Wei Sun, Jian Hou","doi":"10.1109/MAMI.2015.7456586","DOIUrl":null,"url":null,"abstract":"Practical production systems are usually complex, nonlinear and non-Gaussian. Different from some other fault diagnosis methods, particle filter can applied to nonlinear and non-Gaussian systems effectively. The particle impoverishment problem exists in the traditional particle filter algorithm, which influences the results of state estimation. In this paper, we conclude that the general particle impoverishment problem comes from the impoverishment of particle diversity by analyzing the particle filter algorithm. We then design an intelligent particle filter(IPF) to deal with particle impoverishment. IPF relieves the particle impoverishment problem using the genetic strategy. In fact, the general PF is a special case of IPF relieves the particular parameters. Experiment on 160 MW unit fuel model shows that the intelligent particle filter can increase the particles diversity and improve the state estimation results.","PeriodicalId":108908,"journal":{"name":"2015 International Conference on Man and Machine Interfacing (MAMI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Man and Machine Interfacing (MAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAMI.2015.7456586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Practical production systems are usually complex, nonlinear and non-Gaussian. Different from some other fault diagnosis methods, particle filter can applied to nonlinear and non-Gaussian systems effectively. The particle impoverishment problem exists in the traditional particle filter algorithm, which influences the results of state estimation. In this paper, we conclude that the general particle impoverishment problem comes from the impoverishment of particle diversity by analyzing the particle filter algorithm. We then design an intelligent particle filter(IPF) to deal with particle impoverishment. IPF relieves the particle impoverishment problem using the genetic strategy. In fact, the general PF is a special case of IPF relieves the particular parameters. Experiment on 160 MW unit fuel model shows that the intelligent particle filter can increase the particles diversity and improve the state estimation results.
基于智能粒子滤波的故障诊断
实际生产系统通常是复杂的、非线性的、非高斯的。不同于其他故障诊断方法,粒子滤波可以有效地应用于非线性和非高斯系统。传统的粒子滤波算法存在粒子贫困化问题,影响了状态估计的结果。本文通过对粒子滤波算法的分析,得出一般粒子贫化问题来源于粒子多样性贫化的结论。然后,我们设计了一个智能粒子滤波器(IPF)来处理粒子贫化。IPF利用遗传策略解决了粒子贫困化问题。实际上,一般PF是IPF解除特定参数的一种特殊情况。在160mw机组燃料模型上的实验表明,该智能粒子滤波方法可以增加粒子多样性,改善状态估计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信