SCIENZA E MATEMATICA: IL CASO DELL’INDISPENSABILITÀ

Enrico Cinti
{"title":"SCIENZA E MATEMATICA: IL CASO DELL’INDISPENSABILITÀ","authors":"Enrico Cinti","doi":"10.4081/INCONTRI.2019.463","DOIUrl":null,"url":null,"abstract":"In this brief contribution, I will introduce one of the most famous consequences of the interaction between science and mathematics, Putnam and Quine’s argument for the indispensability of mathematical entities. We will start by looking at its standard formulation, and how it is particularly cogent for scientific realists. After this, we will look at the main components of the argument, that is indispensability, naturalism and confirmational holism. Furthermore, we will see how naturalism and confirmational holism give rise to the specific type of scientific realism that underlies Putnam and Quine’s argument. Finally, we will look at some objections and unresolved issues connected to the argument.","PeriodicalId":119535,"journal":{"name":"Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Istituto Lombardo - Accademia di Scienze e Lettere - Incontri di Studio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/INCONTRI.2019.463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this brief contribution, I will introduce one of the most famous consequences of the interaction between science and mathematics, Putnam and Quine’s argument for the indispensability of mathematical entities. We will start by looking at its standard formulation, and how it is particularly cogent for scientific realists. After this, we will look at the main components of the argument, that is indispensability, naturalism and confirmational holism. Furthermore, we will see how naturalism and confirmational holism give rise to the specific type of scientific realism that underlies Putnam and Quine’s argument. Finally, we will look at some objections and unresolved issues connected to the argument.
科学和数学:不可缺少的例子
在这篇简短的文章中,我将介绍科学与数学之间相互作用的最著名的结果之一,即普特南和奎因关于数学实体不可或缺性的论点。我们将从它的标准表述开始,以及它为何对科学现实主义者特别有说服力。之后,我们会看一下论证的主要组成部分,即不可缺少性,自然主义和确认整体论。此外,我们将看到自然主义和确认整体论如何产生特定类型的科学实在论,这是普特南和奎因论证的基础。最后,我们将看看与该论点有关的一些反对意见和未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信