One Parameter Chi-squared Analysis

C. Witkov, K. Zengel
{"title":"One Parameter Chi-squared Analysis","authors":"C. Witkov, K. Zengel","doi":"10.1093/oso/9780198847144.003.0003","DOIUrl":null,"url":null,"abstract":"The chi-squared method for parameter estimation and model testing is developed for the one-parameter case of a line with a slope but no intercept. Curve fitting is motivated, and several methods for curve fitting are introduced. The chi-squared method is shown to be the optimal curve fitting method whenever Gaussian distributed measurement uncertainties and a model are present. The central limit theorem, which assures Gaussian distributed measurement uncertainties for a wide range of physical experiments, is introduced. End-of-chapter problems are included (with solutions in an appendix).","PeriodicalId":182442,"journal":{"name":"Chi-Squared Data Analysis and Model Testing for Beginners","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chi-Squared Data Analysis and Model Testing for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198847144.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The chi-squared method for parameter estimation and model testing is developed for the one-parameter case of a line with a slope but no intercept. Curve fitting is motivated, and several methods for curve fitting are introduced. The chi-squared method is shown to be the optimal curve fitting method whenever Gaussian distributed measurement uncertainties and a model are present. The central limit theorem, which assures Gaussian distributed measurement uncertainties for a wide range of physical experiments, is introduced. End-of-chapter problems are included (with solutions in an appendix).
单参数卡方分析
针对有斜率无截距直线的单参数情况,提出了参数估计和模型检验的卡方方法。对曲线拟合进行了探讨,介绍了几种曲线拟合方法。当存在高斯分布的测量不确定性和模型时,卡方方法是最优的曲线拟合方法。中心极限定理保证了大范围物理实验测量的高斯分布不确定性。包括本章末尾的问题(在附录中有解决方案)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信