Model predictive control of biped walking with bounded uncertainties

N. Villa, Pierre-Brice Wieber
{"title":"Model predictive control of biped walking with bounded uncertainties","authors":"N. Villa, Pierre-Brice Wieber","doi":"10.1109/HUMANOIDS.2017.8246969","DOIUrl":null,"url":null,"abstract":"A biped walking controller for humanoid robots has to handle together hard constraints, dynamic environments, and uncertainties. Model Predictive Control (MPC) is a suitable and widely used control method to handle the first two issues. Uncertainties on the robot imply a non-zero tracking error when trying to follow a reference motion. A standard solution for this issue is to use tighter constraints by introducing some hand tuned safety margins, for the reference motion generation to ensure that the actual robot motion will satisfy all constraints even in presence of the tracking error. In this article, we find bounds for the tracking error and we show how such safety margins can be precisely computed from the tracking error bounds. Also, a tracking control gain is proposed to reduce the restrictiveness introduced with the safety margins. MPC with these considerations ensure the correct operation of the biped robot under a given degree of uncertainties when it is implemented in open-loop. Nevertheless, the straightforward way to implement an MPC closed-loop scheme fails. We discuss the reasons for this failure and propose a robust closed-loop MPC scheme.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A biped walking controller for humanoid robots has to handle together hard constraints, dynamic environments, and uncertainties. Model Predictive Control (MPC) is a suitable and widely used control method to handle the first two issues. Uncertainties on the robot imply a non-zero tracking error when trying to follow a reference motion. A standard solution for this issue is to use tighter constraints by introducing some hand tuned safety margins, for the reference motion generation to ensure that the actual robot motion will satisfy all constraints even in presence of the tracking error. In this article, we find bounds for the tracking error and we show how such safety margins can be precisely computed from the tracking error bounds. Also, a tracking control gain is proposed to reduce the restrictiveness introduced with the safety margins. MPC with these considerations ensure the correct operation of the biped robot under a given degree of uncertainties when it is implemented in open-loop. Nevertheless, the straightforward way to implement an MPC closed-loop scheme fails. We discuss the reasons for this failure and propose a robust closed-loop MPC scheme.
具有有界不确定性的双足行走模型预测控制
人形机器人的双足行走控制器必须同时处理硬约束、动态环境和不确定性。模型预测控制(MPC)是解决前两个问题的一种合适且广泛应用的控制方法。机器人的不确定性意味着在试图跟随参考运动时存在非零跟踪误差。这个问题的标准解决方案是通过引入一些手动调整的安全裕度来使用更严格的约束,用于参考运动生成,以确保即使存在跟踪误差,实际机器人运动也将满足所有约束。在本文中,我们找到了跟踪误差的界限,并展示了如何从跟踪误差界限精确地计算出这种安全边际。此外,还提出了跟踪控制增益,以减少安全裕度带来的限制。考虑到这些因素的MPC保证了双足机器人在开环中实现时在给定不确定程度下的正确运行。然而,直接实现MPC闭环方案的方法失败了。我们讨论了这种失败的原因,并提出了一个鲁棒的闭环MPC方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信