Experiments using data augmentation for speaker adaptation

J. Bellegarda, P. D. Souza, D. Nahamoo, M. Padmanabhan, M. Picheny, L. Bahl
{"title":"Experiments using data augmentation for speaker adaptation","authors":"J. Bellegarda, P. D. Souza, D. Nahamoo, M. Padmanabhan, M. Picheny, L. Bahl","doi":"10.1109/ICASSP.1995.479788","DOIUrl":null,"url":null,"abstract":"Speaker adaptation typically involves customizing some existing (reference) models in order to account for the characteristics of a new speaker. This work considers the slightly different paradigm of customizing some reference data for the purpose of populating the new speaker's space, and then using the resulting (augmented) data to derive the customized models. The data augmentation technique is based on the metamorphic algorithm first proposed in Bellegarda et al. [1992], assuming that a relatively modest amount of data (100 sentences) is available from each new speaker. This contraint requires that reference speakers be selected with some care. The performance of this method is illustrated on a portion of the Wall Street Journal task.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Speaker adaptation typically involves customizing some existing (reference) models in order to account for the characteristics of a new speaker. This work considers the slightly different paradigm of customizing some reference data for the purpose of populating the new speaker's space, and then using the resulting (augmented) data to derive the customized models. The data augmentation technique is based on the metamorphic algorithm first proposed in Bellegarda et al. [1992], assuming that a relatively modest amount of data (100 sentences) is available from each new speaker. This contraint requires that reference speakers be selected with some care. The performance of this method is illustrated on a portion of the Wall Street Journal task.
基于数据增强的说话人自适应实验
说话者适应通常包括定制一些现有的(参考)模型,以考虑新说话者的特征。这项工作考虑了一种稍微不同的范式,即定制一些参考数据,以填充新说话者的空间,然后使用结果(增强)数据来派生定制模型。数据增强技术基于Bellegarda等人[1992]首次提出的变形算法(metamorphic algorithm),假设每个新说话者的数据量相对适中(100个句子)。这个约束要求在选择参考发言者时要小心。该方法的性能在《华尔街日报》任务的一部分中得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信