A New MNN's Training Method with Empirical Study

Jiasen Wang, Pan Wang
{"title":"A New MNN's Training Method with Empirical Study","authors":"Jiasen Wang, Pan Wang","doi":"10.1109/GCIS.2012.35","DOIUrl":null,"url":null,"abstract":"Based on the thought of “to be expert in one aspect and good at many”, a new training method of modular neural network (MNN) is presented. The key point of this method is a subnet learns the neighbor data sets while fulfiling its main task : learning the objective data set. Both methodology and empirical study of this new method are presented. Two examples (static approximation and nonlinear dynamic system prediction) are tested to show the new method's effectiveness: average testing error is dramatically decreased compared to original algorithm..","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Based on the thought of “to be expert in one aspect and good at many”, a new training method of modular neural network (MNN) is presented. The key point of this method is a subnet learns the neighbor data sets while fulfiling its main task : learning the objective data set. Both methodology and empirical study of this new method are presented. Two examples (static approximation and nonlinear dynamic system prediction) are tested to show the new method's effectiveness: average testing error is dramatically decreased compared to original algorithm..
一种新的MNN训练方法与实证研究
基于“一方面精通,多方面精通”的思想,提出了一种新的模块化神经网络(MNN)训练方法。该方法的关键在于子网在完成学习目标数据集这一主要任务的同时,学习了相邻数据集。本文介绍了该方法的方法论和实证研究。两个实例(静态逼近和非线性动态系统预测)验证了新方法的有效性:与原算法相比,平均测试误差显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信