Soybean crop disease classification using machine learning techniques

R. Krishna, P. V.
{"title":"Soybean crop disease classification using machine learning techniques","authors":"R. Krishna, P. V.","doi":"10.1109/DISCOVER50404.2020.9278060","DOIUrl":null,"url":null,"abstract":"Machine learning is very widely used for many applications like classification and regression. Diseases in the soybean crop are classified using machine learning techniques. Physic crop properties and weather parameters are used as a attributes for classification. K nearest neighbor, naive Bayes, decision tree, neural network algorithms are used for classification. The result is compared with the ensemble classifier called bagging.","PeriodicalId":131517,"journal":{"name":"2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER50404.2020.9278060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Machine learning is very widely used for many applications like classification and regression. Diseases in the soybean crop are classified using machine learning techniques. Physic crop properties and weather parameters are used as a attributes for classification. K nearest neighbor, naive Bayes, decision tree, neural network algorithms are used for classification. The result is compared with the ensemble classifier called bagging.
利用机器学习技术进行大豆作物病害分类
机器学习在分类和回归等许多应用中被广泛使用。利用机器学习技术对大豆作物病害进行分类。农作物的物理特性和天气参数被用作分类的属性。采用K近邻、朴素贝叶斯、决策树、神经网络等算法进行分类。结果与称为bagging的集成分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信