Physical and conceptual identifier dispersion: Measures and relation to fault proneness

V. Arnaoudova, L. Eshkevari, R. Oliveto, Yann-Gaël Guéhéneuc, G. Antoniol
{"title":"Physical and conceptual identifier dispersion: Measures and relation to fault proneness","authors":"V. Arnaoudova, L. Eshkevari, R. Oliveto, Yann-Gaël Guéhéneuc, G. Antoniol","doi":"10.1109/ICSM.2010.5609748","DOIUrl":null,"url":null,"abstract":"Poorly-chosen identifiers have been reported in the literature as misleading and increasing the program comprehension effort. Identifiers are composed of terms, which can be dictionary words, acronyms, contractions, or simple strings. We conjecture that the use of identical terms in different contexts may increase the risk of faults. We investigate our conjecture using a measure combining term entropy and term context coverage to study whether certain terms increase the odds ratios of methods to be fault-prone. Entropy measures the physical dispersion of terms in a program: the higher the entropy, the more scattered across the program the terms. Context coverage measures the conceptual dispersion of terms: the higher their context coverage, the more unrelated the methods using them. We compute term entropy and context coverage of terms extracted from identifiers in Rhino 1.4R3 and ArgoUML 0.16. We show statistically that methods containing terms with high entropy and context coverage are more fault-prone than others.","PeriodicalId":101801,"journal":{"name":"2010 IEEE International Conference on Software Maintenance","volume":"39 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSM.2010.5609748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Poorly-chosen identifiers have been reported in the literature as misleading and increasing the program comprehension effort. Identifiers are composed of terms, which can be dictionary words, acronyms, contractions, or simple strings. We conjecture that the use of identical terms in different contexts may increase the risk of faults. We investigate our conjecture using a measure combining term entropy and term context coverage to study whether certain terms increase the odds ratios of methods to be fault-prone. Entropy measures the physical dispersion of terms in a program: the higher the entropy, the more scattered across the program the terms. Context coverage measures the conceptual dispersion of terms: the higher their context coverage, the more unrelated the methods using them. We compute term entropy and context coverage of terms extracted from identifiers in Rhino 1.4R3 and ArgoUML 0.16. We show statistically that methods containing terms with high entropy and context coverage are more fault-prone than others.
物理和概念标识符分散:测量和与故障倾向性的关系
在文献中有报道称,选择不当的标识符会产生误导,并增加程序理解的工作量。标识符由术语组成,这些术语可以是字典中的单词、缩写词、缩略词或简单的字符串。我们推测,在不同的上下文中使用相同的术语可能会增加出错的风险。我们使用术语熵和术语上下文覆盖率相结合的度量来调查我们的猜想,以研究某些术语是否会增加方法容易出错的几率比。熵度量程序中项的物理分散:熵越高,项在程序中的分散程度越高。上下文覆盖度量术语的概念分散:它们的上下文覆盖越高,使用它们的方法就越不相关。我们在Rhino 1.4R3和ArgoUML 0.16中计算从标识符中提取的术语的术语熵和上下文覆盖率。我们在统计上表明,包含具有高熵和上下文覆盖的术语的方法比其他方法更容易出错。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信