Tensor-based Nonlocal MRI Reconstruction with Compressed Sensing

Qidi Wu, Yibing Li, Yun Lin
{"title":"Tensor-based Nonlocal MRI Reconstruction with Compressed Sensing","authors":"Qidi Wu, Yibing Li, Yun Lin","doi":"10.1109/ICDSP.2018.8631792","DOIUrl":null,"url":null,"abstract":"Compressed sensing(CS) is a significant technology in MRI reconstruction, which can reconstruct the image with few undersampled data and speed up the imaging. The conventional CS-based MRI is implemented on the global image, which not only loss many local structures but also fails in preserving the detail information. To improve the reconstruction quality, we proposed a novel CS-based reconstruction model, which is incorporated with nonlocal technology to gain extra details preservation. The proposed model grouped the similar patches within the nonlocal area, and stacked them to form a 3D array. Then, to process the array in a realistic 3D way, a tensor-based sparsity constraint is developed as the regularization on the reconstructed image. Experimental results show that the proposed method is more effectiveness and efficiency than the conventional ones.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Compressed sensing(CS) is a significant technology in MRI reconstruction, which can reconstruct the image with few undersampled data and speed up the imaging. The conventional CS-based MRI is implemented on the global image, which not only loss many local structures but also fails in preserving the detail information. To improve the reconstruction quality, we proposed a novel CS-based reconstruction model, which is incorporated with nonlocal technology to gain extra details preservation. The proposed model grouped the similar patches within the nonlocal area, and stacked them to form a 3D array. Then, to process the array in a realistic 3D way, a tensor-based sparsity constraint is developed as the regularization on the reconstructed image. Experimental results show that the proposed method is more effectiveness and efficiency than the conventional ones.
基于张量的压缩感知非局部MRI重构
压缩感知(CS)技术是磁共振成像重建中的一项重要技术,它可以利用较少的欠采样数据重建图像,提高成像速度。传统的基于cs的MRI是在全局图像上实现的,不仅丢失了许多局部结构,而且不能保留细节信息。为了提高重建质量,我们提出了一种新的基于cs的重建模型,该模型与非局部技术相结合,以获得额外的细节保留。该模型将非局部区域内的相似斑块分组,并将其堆叠形成三维阵列。然后,利用基于张量的稀疏性约束作为重构图像的正则化约束,对阵列进行真实的三维处理。实验结果表明,该方法比传统方法具有更高的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信