Hyperspectral remote sensing image semantic segmentation using extended extrema morphological profiles

Tengyu Ma, Yunfei Liu, Weijian Huang, Chun Wang, Shuangquan Ge
{"title":"Hyperspectral remote sensing image semantic segmentation using extended extrema morphological profiles","authors":"Tengyu Ma, Yunfei Liu, Weijian Huang, Chun Wang, Shuangquan Ge","doi":"10.1117/12.2643022","DOIUrl":null,"url":null,"abstract":"Hyperspectral remote sensing images have been shown to be particularly beneficial for detecting the types of materials in a scene due to their unique spectral properties. This paper proposes a novel semantic segmentation method for hyperspectral image (HSI), which is based on a new spatial-spectral filtering, called extended extrema morphological profiles (EEMPs). Firstly, principal component analysis (PCA) is used as the feature extractor to construct the feature maps by extracting the first informative feature from the hyperspectral image (HSI). Secondly, the extrema morphological profiles (EMPs) are used to extract the spatial-spectral feature from the informative feature maps to construct the EEMPs. Finally, support vector machine (SVM) is utilized to obtain accurate semantic segmentation from the EEMPs. In order to evaluate the semantic segmentation results, the proposed method is tested on a widely used hyperspectral dataset, i.e., Houston dataset, and four metrics, i.e., class accuracy (CA), overall accuracy (OA), average accuracy (AA), and Kappa coefficient, are used to quantitatively measure the segmentation accuracy. The experimental results demonstrate that EEMPs can efficiently achieve good semantic segmentation accuracy.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2643022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral remote sensing images have been shown to be particularly beneficial for detecting the types of materials in a scene due to their unique spectral properties. This paper proposes a novel semantic segmentation method for hyperspectral image (HSI), which is based on a new spatial-spectral filtering, called extended extrema morphological profiles (EEMPs). Firstly, principal component analysis (PCA) is used as the feature extractor to construct the feature maps by extracting the first informative feature from the hyperspectral image (HSI). Secondly, the extrema morphological profiles (EMPs) are used to extract the spatial-spectral feature from the informative feature maps to construct the EEMPs. Finally, support vector machine (SVM) is utilized to obtain accurate semantic segmentation from the EEMPs. In order to evaluate the semantic segmentation results, the proposed method is tested on a widely used hyperspectral dataset, i.e., Houston dataset, and four metrics, i.e., class accuracy (CA), overall accuracy (OA), average accuracy (AA), and Kappa coefficient, are used to quantitatively measure the segmentation accuracy. The experimental results demonstrate that EEMPs can efficiently achieve good semantic segmentation accuracy.
基于扩展极值形态轮廓的高光谱遥感图像语义分割
由于其独特的光谱特性,高光谱遥感图像已被证明对检测场景中的材料类型特别有益。本文提出了一种基于扩展极值形态轮廓(EEMPs)的空间-光谱滤波的高光谱图像语义分割方法。首先,利用主成分分析(PCA)作为特征提取器,从高光谱图像中提取第一个信息特征,构建特征映射;其次,利用极值形态轮廓(EMPs)从信息特征映射中提取空间光谱特征,构建极值形态轮廓;最后,利用支持向量机(SVM)对eemp进行准确的语义分割。为了评价该方法的语义分割效果,在应用广泛的高光谱数据集Houston数据集上进行了测试,并采用类精度(class accuracy, CA)、总体精度(overall accuracy, OA)、平均精度(average accuracy, AA)和Kappa系数4个指标定量度量了该方法的分割精度。实验结果表明,该方法能够有效地实现良好的语义分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信