Fault diagnosis system of rotating machines using Hidden Markov Model (HMM)

Nur Ashar Aditiya, Muhammad Rizky Dharmawan, Zaqiatud Darojah, D. Sanggar
{"title":"Fault diagnosis system of rotating machines using Hidden Markov Model (HMM)","authors":"Nur Ashar Aditiya, Muhammad Rizky Dharmawan, Zaqiatud Darojah, D. Sanggar","doi":"10.1109/KCIC.2017.8228583","DOIUrl":null,"url":null,"abstract":"In the industry, maintenance costs can be reduced by early detection and diagnosis. It can also improve the overall equipment efficiency of the machine system. To diagnose the problem is required a diagnosis system with a particular method. The Hidden Markov Model (HMM) method is used because it can determine the parameters that are hidden from the observable parameters. Then, The specified parameters can be used for further analysis. This study, an error diagnostic system was applied on a rotating machinery using the Hidden Markov Model (HMM) analysis based on error recognition. The expected results are improving efficiency of equipment, diagnose faults on industrial machinery so that the maintenance costs can be reduced.","PeriodicalId":117148,"journal":{"name":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KCIC.2017.8228583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the industry, maintenance costs can be reduced by early detection and diagnosis. It can also improve the overall equipment efficiency of the machine system. To diagnose the problem is required a diagnosis system with a particular method. The Hidden Markov Model (HMM) method is used because it can determine the parameters that are hidden from the observable parameters. Then, The specified parameters can be used for further analysis. This study, an error diagnostic system was applied on a rotating machinery using the Hidden Markov Model (HMM) analysis based on error recognition. The expected results are improving efficiency of equipment, diagnose faults on industrial machinery so that the maintenance costs can be reduced.
基于隐马尔可夫模型的旋转机械故障诊断系统
在工业中,通过早期检测和诊断可以降低维护成本。还可以提高整机系统的整体设备效率。要对该问题进行诊断,需要一个具有特定方法的诊断系统。使用隐马尔可夫模型(HMM)方法,因为它可以确定从可观察参数中隐藏的参数。然后,可以使用指定的参数进行进一步分析。本研究采用基于误差识别的隐马尔可夫模型(HMM)分析方法对旋转机械进行了误差诊断。预期的结果是提高设备的效率,诊断工业机械的故障,从而降低维修成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信