Unsupervised Vessel Segmentation Method in Retinal Images

Zanib Qaiser, Waqar Ahmad, Mir Yasir Umair, Z. Mahmood
{"title":"Unsupervised Vessel Segmentation Method in Retinal Images","authors":"Zanib Qaiser, Waqar Ahmad, Mir Yasir Umair, Z. Mahmood","doi":"10.1109/FIT57066.2022.00022","DOIUrl":null,"url":null,"abstract":"This study presents a low complexity and an automated retinal segmentation approach. This technique processes the G-channel. Later, CLAHE, the PCA, and the Matched Filters are applied. Finally, segmentation is achieved using Otsu’s thresholding. Our technique is assessed on DRIVE and STARE databases. Simulations show that our method obtains accuracy of 95.26% on DRIVE and 94.55% on STARE. Our technique consumes less than 1 second on conventional machine to yield the segmented output image.","PeriodicalId":102958,"journal":{"name":"2022 International Conference on Frontiers of Information Technology (FIT)","volume":"102 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Information Technology (FIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT57066.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study presents a low complexity and an automated retinal segmentation approach. This technique processes the G-channel. Later, CLAHE, the PCA, and the Matched Filters are applied. Finally, segmentation is achieved using Otsu’s thresholding. Our technique is assessed on DRIVE and STARE databases. Simulations show that our method obtains accuracy of 95.26% on DRIVE and 94.55% on STARE. Our technique consumes less than 1 second on conventional machine to yield the segmented output image.
视网膜图像中的无监督血管分割方法
本研究提出一种低复杂度的自动视网膜分割方法。这种技术处理g通道。然后,应用CLAHE、PCA和Matched Filters。最后,使用Otsu阈值分割实现分割。我们的技术在DRIVE和STARE数据库上进行了评估。仿真结果表明,该方法在DRIVE和STARE上的准确率分别为95.26%和94.55%。我们的技术在传统机器上消耗不到1秒的时间来产生分割输出图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信