The Four Seasons of Commodity Futures: Insights from Topological Data Analysis

D. Basu, P. Dłotko
{"title":"The Four Seasons of Commodity Futures: Insights from Topological Data Analysis","authors":"D. Basu, P. Dłotko","doi":"10.2139/ssrn.3506780","DOIUrl":null,"url":null,"abstract":"This study introduces a new technique to analyse the evolution of correlations for multiple time series. The technique is based on applying Topological Data Analysis (TDA) and we use it to gain insights about the evolution of commodity futures markets over the 1997-2017 period. Our findings complement the existing literature and provide new insights into the dynamics of commodity futures markets in the past two decades. Our analysis has both global and local aspects and could be applied to detect changes in correlation structure in a variety of time series as well as cross sectional settings.","PeriodicalId":306457,"journal":{"name":"ERN: Futures (Topic)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Futures (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3506780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a new technique to analyse the evolution of correlations for multiple time series. The technique is based on applying Topological Data Analysis (TDA) and we use it to gain insights about the evolution of commodity futures markets over the 1997-2017 period. Our findings complement the existing literature and provide new insights into the dynamics of commodity futures markets in the past two decades. Our analysis has both global and local aspects and could be applied to detect changes in correlation structure in a variety of time series as well as cross sectional settings.
商品期货的四季:来自拓扑数据分析的见解
本文介绍了一种分析多时间序列相关演化的新方法。该技术基于应用拓扑数据分析(TDA),我们使用它来深入了解1997-2017年期间商品期货市场的演变。我们的研究结果补充了现有文献,并为过去二十年来商品期货市场的动态提供了新的见解。我们的分析具有全局和局部两个方面,可以应用于检测各种时间序列和横截面设置中相关结构的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信