A new neural network approach for fault location of distribution network

F. Yan, Wenxuan Liu, Lin Tian
{"title":"A new neural network approach for fault location of distribution network","authors":"F. Yan, Wenxuan Liu, Lin Tian","doi":"10.1109/MEC.2011.6025718","DOIUrl":null,"url":null,"abstract":"On the basis of analysis on the characteristics of single phase grounding fault occurred in small current neutral grounding system, a fault location method using Learn Vector Quantization Neural Network is put forward. Combined LVQ Neural Network with C-type of traveling wave location method, the purpose of precise location can be achieved. A classical BP (Back-Propagation) Neural Network has been developed to solve the same problem for comparison. The simulation results of ATP-EMTP and MATLAB show that the LVQ Neural Network is quite effective and superior to BP Neural Network in fault location.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

On the basis of analysis on the characteristics of single phase grounding fault occurred in small current neutral grounding system, a fault location method using Learn Vector Quantization Neural Network is put forward. Combined LVQ Neural Network with C-type of traveling wave location method, the purpose of precise location can be achieved. A classical BP (Back-Propagation) Neural Network has been developed to solve the same problem for comparison. The simulation results of ATP-EMTP and MATLAB show that the LVQ Neural Network is quite effective and superior to BP Neural Network in fault location.
一种新的配电网故障定位神经网络方法
在分析小电流中性点接地系统单相接地故障特点的基础上,提出了一种基于学习向量量化神经网络的故障定位方法。将LVQ神经网络与c型行波定位方法相结合,可以达到精确定位的目的。一个经典的BP(反向传播)神经网络已被开发来解决同样的问题,以供比较。ATP-EMTP和MATLAB仿真结果表明,LVQ神经网络在故障定位方面具有较好的效果,且优于BP神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信