Robust Guided Matching and Multi-layer Feature Detection Applied to High Resolution Spherical Images

C. Gava, A. Pagani, B. Krolla, D. Stricker
{"title":"Robust Guided Matching and Multi-layer Feature Detection Applied to High Resolution Spherical Images","authors":"C. Gava, A. Pagani, B. Krolla, D. Stricker","doi":"10.5220/0004300603220327","DOIUrl":null,"url":null,"abstract":"We present a novel, robust guided matching technique. Given a set of calibrated spherical images along with the associated sparse 3D point cloud, our approach consiste tly finds matches across the images in a multilayer feature detection framework. New feature matches are used to refine existing 3D points or to add reliable ones to the point cloud, therefore improving scene represen tatio . We use real indoor and outdoor scenarios to validate the robustness of the proposed approach. Moreov e , we perform a quantitative evaluation of our technique to demonstrate its effectiveness.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004300603220327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a novel, robust guided matching technique. Given a set of calibrated spherical images along with the associated sparse 3D point cloud, our approach consiste tly finds matches across the images in a multilayer feature detection framework. New feature matches are used to refine existing 3D points or to add reliable ones to the point cloud, therefore improving scene represen tatio . We use real indoor and outdoor scenarios to validate the robustness of the proposed approach. Moreov e , we perform a quantitative evaluation of our technique to demonstrate its effectiveness.
高分辨率球面图像的鲁棒引导匹配与多层特征检测
我们提出了一种新的、鲁棒的引导匹配技术。给定一组校准的球形图像以及相关的稀疏3D点云,我们的方法始终在多层特征检测框架中找到图像之间的匹配。新的特征匹配被用来细化现有的3D点或添加可靠的点云,从而提高场景的表现。我们使用真实的室内和室外场景来验证所提出方法的鲁棒性。此外,我们对我们的技术进行了定量评估,以证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信