Skinning vector graphics with GANs

Ankit Phogat, Matthew Fisher, D. Kaufman, Vineet Batra
{"title":"Skinning vector graphics with GANs","authors":"Ankit Phogat, Matthew Fisher, D. Kaufman, Vineet Batra","doi":"10.1145/3306214.3338544","DOIUrl":null,"url":null,"abstract":"We propose a novel method for editing vector graphics which enables users to intuitively modify complex Bézier geometry. Our method uses a Generative Adversarial Network (GAN) to automatically predict salient points for any arbitrary geometry defined by cubic Bézier curves, which are used as handle locations for a Linear Blend Skinning transformation. Further, we bind input geometry to a triangle mesh, to decouple the complexity of input geometry from mesh topology. Finally, to reconstruct Bézier curves from the transformed mesh, we formulate a linear optimization problem and solve it in performant manner to ensure real time feedback, without increasing the number of Bézier segments.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel method for editing vector graphics which enables users to intuitively modify complex Bézier geometry. Our method uses a Generative Adversarial Network (GAN) to automatically predict salient points for any arbitrary geometry defined by cubic Bézier curves, which are used as handle locations for a Linear Blend Skinning transformation. Further, we bind input geometry to a triangle mesh, to decouple the complexity of input geometry from mesh topology. Finally, to reconstruct Bézier curves from the transformed mesh, we formulate a linear optimization problem and solve it in performant manner to ensure real time feedback, without increasing the number of Bézier segments.
皮肤矢量图形与gan
我们提出了一种新的编辑矢量图形的方法,使用户能够直观地修改复杂的bsamzier几何。我们的方法使用生成对抗网络(GAN)来自动预测由三次bsamizier曲线定义的任意几何形状的突出点,这些突出点用作线性混合蒙皮变换的处理位置。此外,我们将输入几何图形绑定到三角形网格,以将输入几何图形的复杂性与网格拓扑解耦。最后,为了从变换后的网格中重构bsamzier曲线,我们在不增加bsamzier段数量的前提下,制定了一个线性优化问题,并以高性能的方式进行求解,以保证实时反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信