Competitive Online Optimization with Multiple Inventories: A Divide-and-Conquer Approach

Qiulin Lin, Yanfang Mo, Junyan Su, Minghua Chen
{"title":"Competitive Online Optimization with Multiple Inventories: A Divide-and-Conquer Approach","authors":"Qiulin Lin, Yanfang Mo, Junyan Su, Minghua Chen","doi":"10.1145/3489048.3530969","DOIUrl":null,"url":null,"abstract":"We study an online inventory trading problem where a user seeks to maximize the aggregate revenue of trading multiple inventories over a time horizon. The trading constraints and concave revenue functions are revealed sequentially in time, and the user needs to make irrevocable decisions. The problem has wide applications in various engineering domains. Existing works employ the primal-dual framework to design online algorithms with sub-optimal, albeit near-optimal, competitive ratios (CR). We exploit the problem structure to develop a new divide-and-conquer approach to solve the online multi-inventory problem by solving multiple calibrated single-inventory ones separately and combining their solutions. The approach achieves the optimal CR of $łn θ + 1$ if $Nłeq łn θ + 1$, where N is the number of inventories and θ represents the revenue function uncertainty; it attains a CR of $1/[1-e^-1/(łnθ+1) ] \\in [łn θ +1, łn θ +2)$ otherwise. The divide-and-conquer approach reveals novel structural insights for the problem, (partially) closes a gap in existing studies, and generalizes to broader settings. For example, it gives an algorithm with a CR within a constant factor to the lower bound for a generalized one-way trading problem with price elasticity with no previous results. When developing the above results, we also extend a recent CR-Pursuit algorithmic framework and introduce an online allocation problem with allowance augmentation, both of which can be of independent interest.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3530969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study an online inventory trading problem where a user seeks to maximize the aggregate revenue of trading multiple inventories over a time horizon. The trading constraints and concave revenue functions are revealed sequentially in time, and the user needs to make irrevocable decisions. The problem has wide applications in various engineering domains. Existing works employ the primal-dual framework to design online algorithms with sub-optimal, albeit near-optimal, competitive ratios (CR). We exploit the problem structure to develop a new divide-and-conquer approach to solve the online multi-inventory problem by solving multiple calibrated single-inventory ones separately and combining their solutions. The approach achieves the optimal CR of $łn θ + 1$ if $Nłeq łn θ + 1$, where N is the number of inventories and θ represents the revenue function uncertainty; it attains a CR of $1/[1-e^-1/(łnθ+1) ] \in [łn θ +1, łn θ +2)$ otherwise. The divide-and-conquer approach reveals novel structural insights for the problem, (partially) closes a gap in existing studies, and generalizes to broader settings. For example, it gives an algorithm with a CR within a constant factor to the lower bound for a generalized one-way trading problem with price elasticity with no previous results. When developing the above results, we also extend a recent CR-Pursuit algorithmic framework and introduce an online allocation problem with allowance augmentation, both of which can be of independent interest.
竞争在线优化与多个库存:分而治之的方法
我们研究了一个在线库存交易问题,其中用户寻求在一段时间内交易多个库存的总收益最大化。交易约束和凹收益函数随时间顺序揭示,用户需要做出不可撤销的决策。该问题在各个工程领域有着广泛的应用。现有工作采用原始对偶框架来设计具有次优(尽管接近最优)竞争比(CR)的在线算法。利用该问题结构,提出了一种分而治之的在线多库存问题求解方法,即分别求解多个校准单库存问题并将其解组合起来。当$Nłeq łn θ + 1$时,该方法获得$łn θ + 1$的最优CR,其中N为库存数量,θ为收益函数的不确定性;它达到1美元的CR /[单电子^ 1 /(łnθ+ 1)]\[łnθ+ 1,łnθ+ 2)否则美元。分而治之的方法揭示了问题的新颖结构见解,(部分地)缩小了现有研究的空白,并推广到更广泛的环境。例如,对于一个具有价格弹性且没有先前结果的广义单向交易问题,给出了一个CR在常数因子下界内的算法。在开发上述结果时,我们还扩展了最近的CR-Pursuit算法框架,并引入了一个带有允许增量的在线分配问题,这两个问题都可以独立研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信