Instructive video retrieval for surgical skill coaching using attribute learning

Lin Chen, Qiang Zhang, Peng Zhang, Baoxin Li
{"title":"Instructive video retrieval for surgical skill coaching using attribute learning","authors":"Lin Chen, Qiang Zhang, Peng Zhang, Baoxin Li","doi":"10.1109/ICME.2015.7177389","DOIUrl":null,"url":null,"abstract":"Video-based coaching systems have seen increasing adoption in various applications including dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated feedback to a trainee). In this paper, we present a video-based skill coaching system for simulation-based surgical training by exploring a newly proposed problem of instructive video retrieval. By introducing attribute learning into video for high-level skill understanding, we aim at providing automated feedback and providing an instructive video, to which the trainees can refer for performance improvement. This is achieved by ensuring the feedback is weakness-specific, skill-superior and content-similar. A suite of techniques was integrated to build the coaching system with these features. In particular, algorithms were developed for action segmentation, video attribute learning, and attribute-based video retrieval. Experiments with realistic surgical videos demonstrate the feasibility of the proposed method and suggest areas for further improvement.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Video-based coaching systems have seen increasing adoption in various applications including dance, sports, and surgery training. Most existing systems are either passive (for data capture only) or barely active (with limited automated feedback to a trainee). In this paper, we present a video-based skill coaching system for simulation-based surgical training by exploring a newly proposed problem of instructive video retrieval. By introducing attribute learning into video for high-level skill understanding, we aim at providing automated feedback and providing an instructive video, to which the trainees can refer for performance improvement. This is achieved by ensuring the feedback is weakness-specific, skill-superior and content-similar. A suite of techniques was integrated to build the coaching system with these features. In particular, algorithms were developed for action segmentation, video attribute learning, and attribute-based video retrieval. Experiments with realistic surgical videos demonstrate the feasibility of the proposed method and suggest areas for further improvement.
基于属性学习的外科技术指导视频检索
基于视频的教练系统已经越来越多地应用于各种应用,包括舞蹈、体育和外科训练。大多数现有系统要么是被动的(仅用于数据捕获),要么是勉强主动的(对受训人员的自动反馈有限)。在本文中,我们通过探索一个新提出的指导性视频检索问题,提出了一个基于视频的外科模拟训练技能指导系统。通过在视频中引入属性学习来理解高水平的技能,我们的目的是提供自动反馈,并提供一个有指导意义的视频,供学员参考以提高绩效。要做到这一点,就要确保反馈是针对弱点、技能优势和内容相似的。我们整合了一套技术来构建具有这些功能的教练系统。特别是,开发了动作分割、视频属性学习和基于属性的视频检索算法。实际手术视频的实验证明了该方法的可行性,并提出了进一步改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信