UPS: efficient privacy protection in personalized web search

Gang Chen, He Bai, L. Shou, Ke Chen, Yunjun Gao
{"title":"UPS: efficient privacy protection in personalized web search","authors":"Gang Chen, He Bai, L. Shou, Ke Chen, Yunjun Gao","doi":"10.1145/2009916.2009999","DOIUrl":null,"url":null,"abstract":"In recent years, personalized web search (PWS) has demonstrated effectiveness in improving the quality of search service on the Internet. Unfortunately, the need for collecting private information in PWS has become a major barrier for its wide proliferation. We study privacy protection in PWS engines which capture personalities in user profiles. We propose a PWS framework called UPS that can generalize profiles in for each query according to user-specified privacy requirements. Two predictive metrics are proposed to evaluate the privacy breach risk and the query utility for hierarchical user profile. We develop two simple but effective generalization algorithms for user profiles allowing for query-level customization using our proposed metrics. We also provide an online prediction mechanism based on query utility for deciding whether to personalize a query in UPS. Extensive experiments demonstrate the efficiency and effectiveness of our framework.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

In recent years, personalized web search (PWS) has demonstrated effectiveness in improving the quality of search service on the Internet. Unfortunately, the need for collecting private information in PWS has become a major barrier for its wide proliferation. We study privacy protection in PWS engines which capture personalities in user profiles. We propose a PWS framework called UPS that can generalize profiles in for each query according to user-specified privacy requirements. Two predictive metrics are proposed to evaluate the privacy breach risk and the query utility for hierarchical user profile. We develop two simple but effective generalization algorithms for user profiles allowing for query-level customization using our proposed metrics. We also provide an online prediction mechanism based on query utility for deciding whether to personalize a query in UPS. Extensive experiments demonstrate the efficiency and effectiveness of our framework.
UPS:个性化网页搜索中高效的隐私保护
近年来,个性化网页搜索(PWS)在提高互联网搜索服务质量方面表现出了显著的效果。不幸的是,在PWS中收集私人信息的需求已成为其广泛扩散的主要障碍。我们研究了PWS引擎中的隐私保护,该引擎捕获用户配置文件中的个性。我们提出了一个名为UPS的PWS框架,它可以根据用户指定的隐私要求对每个查询进行概要化。提出了两个预测指标来评估分层用户档案的隐私泄露风险和查询效用。我们为用户配置文件开发了两种简单但有效的泛化算法,允许使用我们提出的指标进行查询级定制。我们还提供了一种基于查询实用程序的在线预测机制,用于决定是否在UPS中个性化查询。大量的实验证明了我们的框架的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信