Multilingual speaker recognition on Indian languages

Sourjya Sarkar, K. S. Rao, Dipanjan Nandi, S. B. S. Kumar
{"title":"Multilingual speaker recognition on Indian languages","authors":"Sourjya Sarkar, K. S. Rao, Dipanjan Nandi, S. B. S. Kumar","doi":"10.1109/INDCON.2013.6726131","DOIUrl":null,"url":null,"abstract":"In this paper we explore the performance of multilingual speaker recognition systems developed on the IITKGP-MLILSC speech corpus. Closed-set speaker identification and speaker verification experiments are individually conducted on 13 widely spoken Indian languages. In particular, we focus on the effect of language mismatch in the speaker recognition performance of individual languages and all languages together. The standard GMM-based speaker recognition framework is used. While the average language-independent speaker identification rate is as high as 95.21%, an average equal error rate of 11.71% shows scope for further improvement in speaker verification performance.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6726131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we explore the performance of multilingual speaker recognition systems developed on the IITKGP-MLILSC speech corpus. Closed-set speaker identification and speaker verification experiments are individually conducted on 13 widely spoken Indian languages. In particular, we focus on the effect of language mismatch in the speaker recognition performance of individual languages and all languages together. The standard GMM-based speaker recognition framework is used. While the average language-independent speaker identification rate is as high as 95.21%, an average equal error rate of 11.71% shows scope for further improvement in speaker verification performance.
印度语言的多语种说话人识别
本文探讨了基于IITKGP-MLILSC语音语料库开发的多语言说话人识别系统的性能。对13种广泛使用的印度语言分别进行了闭集说话人识别和说话人验证实验。我们特别关注语言不匹配对单个语言和所有语言的说话人识别性能的影响。使用标准的基于gmm的说话人识别框架。与语言无关的说话人识别率平均高达95.21%,平均等错误率为11.71%,表明说话人验证性能还有进一步提高的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信