From model building to analytics solution in hours the enterprise platform for analytics teams

Szymon Brandys, Umit Cakmak, Lukasz Cmielowski, Martin Solarski
{"title":"From model building to analytics solution in hours the enterprise platform for analytics teams","authors":"Szymon Brandys, Umit Cakmak, Lukasz Cmielowski, Martin Solarski","doi":"10.1109/BESC.2017.8256382","DOIUrl":null,"url":null,"abstract":"This demo paper describes our approach to make the work of analytics teams in the enterprise environment easy. The paper introduces a SaaS platform, called IBM Data Science Experience, which enables such cross-functional teams to collaborate using various advanced algorithms for data analysis through a light-weight web interface. While the list of supported algorithms is growing, this paper focuses on two services that the platform supports, namely Watson Machine Learning and Decision Optimization, and illustrates their use in an example.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This demo paper describes our approach to make the work of analytics teams in the enterprise environment easy. The paper introduces a SaaS platform, called IBM Data Science Experience, which enables such cross-functional teams to collaborate using various advanced algorithms for data analysis through a light-weight web interface. While the list of supported algorithms is growing, this paper focuses on two services that the platform supports, namely Watson Machine Learning and Decision Optimization, and illustrates their use in an example.
在数小时内从模型构建到分析解决方案,为分析团队提供企业平台
这篇演示论文描述了我们使分析团队在企业环境中工作变得更容易的方法。本文介绍了一个名为IBM Data Science Experience的SaaS平台,该平台使跨职能团队能够通过轻量级web界面使用各种高级算法进行数据分析。虽然支持的算法列表正在增长,但本文主要关注该平台支持的两种服务,即沃森机器学习和决策优化,并通过示例说明它们的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信