Dual-drive force/velocity control: implementation and experimental results

P. Kazanzides, N. S. Bradley, W. Wolovich
{"title":"Dual-drive force/velocity control: implementation and experimental results","authors":"P. Kazanzides, N. S. Bradley, W. Wolovich","doi":"10.1109/ROBOT.1989.99973","DOIUrl":null,"url":null,"abstract":"The authors present the dual-drive control concept, which is a form of hybrid force/velocity control in which the constraint frame is automatically determined from feedback information. This allows compliant tasks to be conveniently specified in terms of a desired (normal) force and a desired (tangential) velocity. The proposed control algorithm is appropriate for compliant tasks that require motion orthogonal to the contact force; for example, turning a crank or tracking a surface. These basic tasks can be performed without the continuous involvement and corresponding overhead of a high-level planner. This is accomplished by the definition of a plane on which compliant motion is to occur and a point with which force and velocity directions are determined. The dual drive controller has been implemented on the SIERA system and is being used to control an IBM 7565 robot. Experimental results for crank-turning and surface-tracking problems are provided to illustrate the algorithm.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.99973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The authors present the dual-drive control concept, which is a form of hybrid force/velocity control in which the constraint frame is automatically determined from feedback information. This allows compliant tasks to be conveniently specified in terms of a desired (normal) force and a desired (tangential) velocity. The proposed control algorithm is appropriate for compliant tasks that require motion orthogonal to the contact force; for example, turning a crank or tracking a surface. These basic tasks can be performed without the continuous involvement and corresponding overhead of a high-level planner. This is accomplished by the definition of a plane on which compliant motion is to occur and a point with which force and velocity directions are determined. The dual drive controller has been implemented on the SIERA system and is being used to control an IBM 7565 robot. Experimental results for crank-turning and surface-tracking problems are provided to illustrate the algorithm.<>
双驱动力/速度控制:实现及实验结果
提出了一种由反馈信息自动确定约束框架的力/速度混合控制形式的双驱动控制概念。这允许按照期望的(法向)力和期望的(切向)速度方便地指定顺从任务。所提出的控制算法适用于要求运动与接触力正交的柔顺任务;例如,转动曲柄或跟踪一个表面。这些基本任务可以在没有高级计划人员的持续参与和相应开销的情况下执行。这是通过定义一个平面和一个确定力和速度方向的点来实现的。双驱动控制器已在SIERA系统上实现,并被用于控制IBM 7565机器人。给出了曲柄车削和曲面跟踪问题的实验结果来说明该算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信