Premature Ventricular Contraction Recognition using a Fuzzy Maximum Approaching Degree

Eder Pereira Neves, B. R. Oliveira, M. A. Q. Duarte, J. Vieira Filho
{"title":"Premature Ventricular Contraction Recognition using a Fuzzy Maximum Approaching Degree","authors":"Eder Pereira Neves, B. R. Oliveira, M. A. Q. Duarte, J. Vieira Filho","doi":"10.33837/msj.v6i1.1591","DOIUrl":null,"url":null,"abstract":"This work presents a new methodology for ventricular premature contraction arrhythmias recognition using a set of geometrical attributes recently proposed and a fuzzy maximum approaching degree.  Pattern models based on triangular and trapezoidal membership functions are proposed and a committee comprising these functions is composed using some statistical data, beyond a mechanism for manual selection of attributes and automatic weighting for each attribute. The obtained results show the efficiency and validity of the proposed approach, with 99.07%, 98.36% and 99.79% of accuracy, sensibility and specificity, respectively, as good as the ones obtained by the state-of-art methods.","PeriodicalId":113369,"journal":{"name":"Multi-Science Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multi-Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33837/msj.v6i1.1591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a new methodology for ventricular premature contraction arrhythmias recognition using a set of geometrical attributes recently proposed and a fuzzy maximum approaching degree.  Pattern models based on triangular and trapezoidal membership functions are proposed and a committee comprising these functions is composed using some statistical data, beyond a mechanism for manual selection of attributes and automatic weighting for each attribute. The obtained results show the efficiency and validity of the proposed approach, with 99.07%, 98.36% and 99.79% of accuracy, sensibility and specificity, respectively, as good as the ones obtained by the state-of-art methods.
利用模糊最大逼近度识别室性早搏
这项工作提出了一种新的方法室性早搏心律失常识别使用一组几何属性最近提出的模糊最大接近度。提出了基于三角形和梯形隶属函数的模式模型,并利用统计数据组成了一个由这些函数组成的委员会,超越了手动选择属性和每个属性自动加权的机制。结果表明,该方法的准确性、敏感性和特异性分别为99.07%、98.36%和99.79%,与现有方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信