A Comparative Analysis of Clustering Algorithms for Ultrasound Image Despeckling Applications

Prerna Singh, R. Mukundan, Rex de Ryke
{"title":"A Comparative Analysis of Clustering Algorithms for Ultrasound Image Despeckling Applications","authors":"Prerna Singh, R. Mukundan, Rex de Ryke","doi":"10.1145/3282286.3282290","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel framework for speckle noise suppression and edge preservation using clustering algorithms in ultrasound images. The algorithms considered are K-means clustering, fuzzy C-means clustering, possibilistic C-means, fuzzy possibilistic C-means, and possibilistic fuzzy C-means clustering. This work presents an exhaustive comparative analysis of the above clustering algorithms to consider their suitability for despeckling and identifies the best clustering algorithm. Two types of dataset are considered: medical ultrasound images of the thyroid, and synthetically modelled ultrasound images. The framework consists of several distinct phases - first the edges of the image are identified using the Canny edge operator, and then a clustering algorithm applied on high frequency coefficients extracted using wavelet transform. Finally, the preserved edges are added back to speckle suppressed image. Thus, the proposed clustering method effectively accomplishes both speckle suppression and edge preservation. This paper also presents a quantitative evaluation of results to demonstrate the effectiveness of the clustering approach.","PeriodicalId":324982,"journal":{"name":"Proceedings of the 2nd International Conference on Graphics and Signal Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3282286.3282290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel framework for speckle noise suppression and edge preservation using clustering algorithms in ultrasound images. The algorithms considered are K-means clustering, fuzzy C-means clustering, possibilistic C-means, fuzzy possibilistic C-means, and possibilistic fuzzy C-means clustering. This work presents an exhaustive comparative analysis of the above clustering algorithms to consider their suitability for despeckling and identifies the best clustering algorithm. Two types of dataset are considered: medical ultrasound images of the thyroid, and synthetically modelled ultrasound images. The framework consists of several distinct phases - first the edges of the image are identified using the Canny edge operator, and then a clustering algorithm applied on high frequency coefficients extracted using wavelet transform. Finally, the preserved edges are added back to speckle suppressed image. Thus, the proposed clustering method effectively accomplishes both speckle suppression and edge preservation. This paper also presents a quantitative evaluation of results to demonstrate the effectiveness of the clustering approach.
聚类算法在超声图像去斑中的应用
本文提出了一种基于聚类算法的超声图像散斑噪声抑制和边缘保持的新框架。考虑的算法有k -均值聚类、模糊c -均值聚类、可能性c -均值、模糊可能性c -均值和可能性模糊c -均值聚类。本文对上述聚类算法进行了详尽的比较分析,以考虑它们对去斑的适用性,并确定最佳聚类算法。考虑了两种类型的数据集:甲状腺的医学超声图像和综合建模超声图像。该框架包括几个不同的阶段,首先使用Canny边缘算子识别图像的边缘,然后使用小波变换对提取的高频系数进行聚类算法。最后,将保留的边缘添加到散斑抑制图像中。因此,本文提出的聚类方法有效地实现了散斑抑制和边缘保留。本文还对结果进行了定量评价,以证明聚类方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信