Towards an accurate topological localization using a Bag-of-SIFT-visual-Words model

Emanuela Boros
{"title":"Towards an accurate topological localization using a Bag-of-SIFT-visual-Words model","authors":"Emanuela Boros","doi":"10.1109/ICCP.2012.6356175","DOIUrl":null,"url":null,"abstract":"Topological localization is a problem in mobile robotics that implies the ability of an agent to self locate in an environment. In this paper, we approach the task of topological localization without using a temporal continuity of the images of the places the robot has been. The environment is represented by an office under different illumination settings acquired with a perspective camera mounted on a robot platform. We create visual vocabularies based on invariant local features and different distance-based K-means clustering. The experimental setup is performed with an One-versus-All classifier with different kernel functions that achieved success.","PeriodicalId":406461,"journal":{"name":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2012.6356175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Topological localization is a problem in mobile robotics that implies the ability of an agent to self locate in an environment. In this paper, we approach the task of topological localization without using a temporal continuity of the images of the places the robot has been. The environment is represented by an office under different illumination settings acquired with a perspective camera mounted on a robot platform. We create visual vocabularies based on invariant local features and different distance-based K-means clustering. The experimental setup is performed with an One-versus-All classifier with different kernel functions that achieved success.
利用sift -视觉词袋模型实现精确的拓扑定位
拓扑定位是移动机器人中的一个问题,它意味着智能体在环境中自我定位的能力。在本文中,我们在不使用机器人所在位置图像的时间连续性的情况下处理拓扑定位任务。环境由一个办公室代表,在不同的照明设置下,通过安装在机器人平台上的透视相机获得。我们基于不变的局部特征和不同距离的K-means聚类来创建视觉词汇表。实验设置是用具有不同核函数的one - against - all分类器执行的,该分类器取得了成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信