Localization in Algebra

L. Tu
{"title":"Localization in Algebra","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.29","DOIUrl":null,"url":null,"abstract":"This chapter provides a digression concerning the all-important technique of localization in algebra. Localization generally means formally inverting a multiplicatively closed subset in a ring. However, the chapter focuses on the particular case of inverting all nonnegative powers of a variable u in an ℝ[u]-module. Localization of an ℝ[u]-module with respect to a variable u kills the torsion elements and preserves exactness. The chapter then looks at the proposition that localization preserves the direct sum. The simplest proof for this proposition is probably one that uses the universal mapping property of the direct sum. The chapter also considers antiderivations under localization.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"764 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter provides a digression concerning the all-important technique of localization in algebra. Localization generally means formally inverting a multiplicatively closed subset in a ring. However, the chapter focuses on the particular case of inverting all nonnegative powers of a variable u in an ℝ[u]-module. Localization of an ℝ[u]-module with respect to a variable u kills the torsion elements and preserves exactness. The chapter then looks at the proposition that localization preserves the direct sum. The simplest proof for this proposition is probably one that uses the universal mapping property of the direct sum. The chapter also considers antiderivations under localization.
代数中的局部化
本章提供了一个关于代数中最重要的局部化技术的题外话。局部化一般是指形式上对环上的乘闭子集求逆。然而,这一章的重点是在一个特殊的情况下反转一个变量u的所有非负的幂在一个函数[u]-模中。一个关于变量u的模的局部化消除了扭转元素并保持了精度。然后,本章着眼于定位保留直接和的命题。这个命题最简单的证明可能是利用直和的全称映射性质的证明。本章还考虑了局部化条件下的反导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信