GA based selection and parameter optimization for an SVM based underwater target classifier

B. Sherin, M. Supriya
{"title":"GA based selection and parameter optimization for an SVM based underwater target classifier","authors":"B. Sherin, M. Supriya","doi":"10.1109/SYMPOL.2015.7581164","DOIUrl":null,"url":null,"abstract":"Underwater target classification is a very demanding task owing to ever changing complicated nature of the underwater communication channels. Underwater target classification system identifies targets from a mixture of underwater events by its characteristic signature. The characteristic signatures pertaining to each target are patterned by feature recognition algorithms operating on hydrophone captured data. In this paper, an SVM target classifier is used to distinguish between targets of 4 acoustic classes. The performance of the classifier is improved by automating the selection of optimal algorithmic parameters. This paper attempts towards optimal selection of SVM parameters, kernel and kernel parameters using genetic algorithm.","PeriodicalId":127848,"journal":{"name":"2015 International Symposium on Ocean Electronics (SYMPOL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Ocean Electronics (SYMPOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYMPOL.2015.7581164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Underwater target classification is a very demanding task owing to ever changing complicated nature of the underwater communication channels. Underwater target classification system identifies targets from a mixture of underwater events by its characteristic signature. The characteristic signatures pertaining to each target are patterned by feature recognition algorithms operating on hydrophone captured data. In this paper, an SVM target classifier is used to distinguish between targets of 4 acoustic classes. The performance of the classifier is improved by automating the selection of optimal algorithmic parameters. This paper attempts towards optimal selection of SVM parameters, kernel and kernel parameters using genetic algorithm.
基于遗传算法的支持向量机水下目标分类器选择与参数优化
由于水下通信信道的复杂性不断变化,水下目标分类是一项要求很高的任务。水下目标分类系统是利用水下事件的特征特征来识别混合水下事件中的目标。与每个目标相关的特征签名通过对水听器捕获数据操作的特征识别算法进行图案化。本文采用支持向量机目标分类器对4类声学目标进行分类。通过自动选择最优算法参数,提高了分类器的性能。本文尝试用遗传算法对支持向量机参数、核和核参数进行优化选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信