Learning with Guaranteed Label Quality

Eileen A. Ni, C. Ling
{"title":"Learning with Guaranteed Label Quality","authors":"Eileen A. Ni, C. Ling","doi":"10.1109/ICMLA.2011.88","DOIUrl":null,"url":null,"abstract":"In supervised learning, label quality is crucial for learning performance. However, noise is ubiquitous in labels provided by oracles in active learning. To rule out its negative influence, multiple-oracles have been proposed. However, unrealistic assumptions (such as the evenly distributed noise level of oracles) have been made to restrict the learning algorithms for real-world applications. In this paper, we propose a learning algorithm, c-certainty, to guarantee the label quality, and allow the noise level of oracles to be example-dependent. Furthermore, we develop an effective learning algorithm which is able to select the more accurate oracles to query. The experiment results show that the learning strategy developed in this paper outperforms other learning algorithms significantly.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In supervised learning, label quality is crucial for learning performance. However, noise is ubiquitous in labels provided by oracles in active learning. To rule out its negative influence, multiple-oracles have been proposed. However, unrealistic assumptions (such as the evenly distributed noise level of oracles) have been made to restrict the learning algorithms for real-world applications. In this paper, we propose a learning algorithm, c-certainty, to guarantee the label quality, and allow the noise level of oracles to be example-dependent. Furthermore, we develop an effective learning algorithm which is able to select the more accurate oracles to query. The experiment results show that the learning strategy developed in this paper outperforms other learning algorithms significantly.
保证标签质量的学习
在监督学习中,标签质量对学习绩效至关重要。然而,在主动学习中,由神谕提供的标签中,噪音无处不在。为了排除它的负面影响,人们提出了多重预言。然而,不切实际的假设(比如oracle的均匀分布的噪声水平)限制了现实世界应用程序的学习算法。在本文中,我们提出了一种学习算法,c-确定性,以保证标签质量,并允许预言机的噪声水平依赖于实例。此外,我们开发了一种有效的学习算法,能够选择更准确的神谕进行查询。实验结果表明,本文提出的学习策略明显优于其他学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信