Estimating hourly marginal emission in real time for PJM market area using a machine learning approach

Caisheng Wang, Yang Wang, Carol J. Miller, Jeremy Lin
{"title":"Estimating hourly marginal emission in real time for PJM market area using a machine learning approach","authors":"Caisheng Wang, Yang Wang, Carol J. Miller, Jeremy Lin","doi":"10.1109/PESGM.2016.7741759","DOIUrl":null,"url":null,"abstract":"There has been no marginal emission information and/or marginal fuel mix data published by the regional transmission organizations (RTOs) or independent system operators (ISOs) in real-time. This paper presents a support vector machine (SVM) based method to estimate and predict hourly marginal emissions and marginal fuel mix in real-time in the PJM market area. Input to our SVM-based model includes a variety of publicly available data including the real-time locational marginal prices (LMPs), load demand, wind generation, historical marginal fuel data, and other information (such as day of the week and holidays). The results from the SVM are compared with real data from the years 2014 and 2015.","PeriodicalId":155315,"journal":{"name":"2016 IEEE Power and Energy Society General Meeting (PESGM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Power and Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2016.7741759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

There has been no marginal emission information and/or marginal fuel mix data published by the regional transmission organizations (RTOs) or independent system operators (ISOs) in real-time. This paper presents a support vector machine (SVM) based method to estimate and predict hourly marginal emissions and marginal fuel mix in real-time in the PJM market area. Input to our SVM-based model includes a variety of publicly available data including the real-time locational marginal prices (LMPs), load demand, wind generation, historical marginal fuel data, and other information (such as day of the week and holidays). The results from the SVM are compared with real data from the years 2014 and 2015.
使用机器学习方法实时估计PJM市场区域的每小时边际排放量
区域输电组织(rto)或独立系统运营商(iso)没有实时发布边际排放信息和/或边际燃料混合数据。本文提出了一种基于支持向量机(SVM)的PJM市场区域小时边际排放和边际燃料混合实时估计和预测方法。输入到我们基于支持向量机的模型中,包括各种公开可用的数据,包括实时位置边际价格(LMPs)、负载需求、风力发电、历史边际燃料数据和其他信息(如星期几和节假日)。将SVM结果与2014年和2015年的实际数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信