Convergence Acceleration of Iterative Methods for Inverting Real Matrices Using Frobenius Norm Minimization

Ajinkya Borle, S. Lomonaco
{"title":"Convergence Acceleration of Iterative Methods for Inverting Real Matrices Using Frobenius Norm Minimization","authors":"Ajinkya Borle, S. Lomonaco","doi":"10.1109/SYNASC.2016.031","DOIUrl":null,"url":null,"abstract":"The Schulz-type methods for computing generalizedmatrix inverses are a family of iterative methods that are popular for their high order of convergence (≥ 2). We propose two new scaled acceleration techniques for such type of iterative methods for real matrices (based on Frobenius norm minimization) andlay out efficient algorithms to implement these techniques. Testresults show one of our techniques to be most effective for densematrices but also works for sparse cases as well.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Schulz-type methods for computing generalizedmatrix inverses are a family of iterative methods that are popular for their high order of convergence (≥ 2). We propose two new scaled acceleration techniques for such type of iterative methods for real matrices (based on Frobenius norm minimization) andlay out efficient algorithms to implement these techniques. Testresults show one of our techniques to be most effective for densematrices but also works for sparse cases as well.
利用Frobenius范数最小化求实矩阵逆的迭代方法的收敛加速
计算广义矩阵逆的schulz型方法是一系列迭代方法,它们因其高收敛阶(≥2)而广受欢迎。我们提出了两种新的基于Frobenius范数最小化的实际矩阵的此类迭代方法的缩放加速技术,并提出了实现这些技术的有效算法。测试结果表明,我们的一种技术对密集矩阵最有效,但也适用于稀疏情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信