Named Entity Filters for Robust Machine Reading Comprehension

Yuxing Peng, Jane Yung-jen Hsu
{"title":"Named Entity Filters for Robust Machine Reading Comprehension","authors":"Yuxing Peng, Jane Yung-jen Hsu","doi":"10.1109/TAAI.2018.00048","DOIUrl":null,"url":null,"abstract":"The machine reading comprehension problem aims to extract crucial information from the given document to answer the relevant questions. Although many methods regarding the problem have been proposed, the similarity distraction problem inside remains unsolved. The similarity distraction problem addresses the error caused by some sentences being very similar to the question but not containing the answer. Named entities have the uniqueness which can be utilized to distinguish similar sentences to prevent models from being distracted. In this paper, named entity filters (NE filters) are proposed. NE filters can utilize the information of named entities to alleviate the similarity distraction problem. Experiment results in this paper show that the NE filter can enhance the robustness of the used model. The baseline model increases 5% to 10% F1 score on two adversarial SQuAD datasets without decreasing the F1 score on the original SQuAD dataset. Besides, by adding the NE filter, other existing models increases 5% F1 score on the adversarial datasets with less than 1% loss on the original one.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The machine reading comprehension problem aims to extract crucial information from the given document to answer the relevant questions. Although many methods regarding the problem have been proposed, the similarity distraction problem inside remains unsolved. The similarity distraction problem addresses the error caused by some sentences being very similar to the question but not containing the answer. Named entities have the uniqueness which can be utilized to distinguish similar sentences to prevent models from being distracted. In this paper, named entity filters (NE filters) are proposed. NE filters can utilize the information of named entities to alleviate the similarity distraction problem. Experiment results in this paper show that the NE filter can enhance the robustness of the used model. The baseline model increases 5% to 10% F1 score on two adversarial SQuAD datasets without decreasing the F1 score on the original SQuAD dataset. Besides, by adding the NE filter, other existing models increases 5% F1 score on the adversarial datasets with less than 1% loss on the original one.
鲁棒机器阅读理解的命名实体过滤器
机器阅读理解问题旨在从给定文档中提取关键信息以回答相关问题。虽然针对该问题已经提出了许多方法,但其中的相似性分散问题仍未得到解决。相似度分散问题解决了一些句子与问题非常相似但不包含答案所导致的错误。命名实体具有唯一性,可以用来区分相似的句子,防止模型分心。本文提出了命名实体过滤器(网元过滤器)。网元过滤器可以利用命名实体的信息来缓解相似度分散问题。实验结果表明,该滤波方法可以增强模型的鲁棒性。基线模型在不降低原始SQuAD数据集上的F1分数的情况下,在两个敌对SQuAD数据集上增加5%到10%的F1分数。此外,其他已有模型通过添加网元过滤器,在对抗数据集上提高了5%的F1分数,而在原始数据集上的损失小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信