{"title":"Nominal Sets in Agda - A Fresh and Immature Mechanization","authors":"Miguel Pagano, Jos'e E. Solsona","doi":"10.4204/EPTCS.376.7","DOIUrl":null,"url":null,"abstract":"In this paper we present our current development on a new formalization of nominal sets in Agda. Our first motivation in having another formalization was to understand better nominal sets and to have a playground for testing type systems based on nominal logic. Not surprisingly, we have independently built up the same hierarchy of types leading to nominal sets. We diverge from other formalizations in how to conceive finite permutations: in our formalization a finite permutation is a permutation (i.e. a bijection) whose domain is finite. Finite permutations have different representations, for instance as compositions of transpositions (the predominant in other formalizations) or compositions of disjoint cycles. We prove that these representations are equivalent and use them to normalize (up to composition order of independent transpositions) compositions of transpositions.","PeriodicalId":374401,"journal":{"name":"Workshop on Logical and Semantic Frameworks with Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Logical and Semantic Frameworks with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.376.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we present our current development on a new formalization of nominal sets in Agda. Our first motivation in having another formalization was to understand better nominal sets and to have a playground for testing type systems based on nominal logic. Not surprisingly, we have independently built up the same hierarchy of types leading to nominal sets. We diverge from other formalizations in how to conceive finite permutations: in our formalization a finite permutation is a permutation (i.e. a bijection) whose domain is finite. Finite permutations have different representations, for instance as compositions of transpositions (the predominant in other formalizations) or compositions of disjoint cycles. We prove that these representations are equivalent and use them to normalize (up to composition order of independent transpositions) compositions of transpositions.