A nearly optimal control approach for uncertainty input-delay systems based on adaptive dynamic programming

Yu‐Chen Lin, Hsin-Chang Chen, C. Peng
{"title":"A nearly optimal control approach for uncertainty input-delay systems based on adaptive dynamic programming","authors":"Yu‐Chen Lin, Hsin-Chang Chen, C. Peng","doi":"10.1109/CACS.2017.8284252","DOIUrl":null,"url":null,"abstract":"This paper concerned with a nearly optimal control approach based on adaptive dynamic programming technique to solve robust control problem of the neutral type time-delay systems, taking parameter uncertainties and input delay into account. Based on the neural network (NN)-based adaptive dynamic programming and Lyapunov-Razumikhin theorems, the robust control design problem can be equivalently transformed into a nearly optimal control problem, and the amount of matched uncertainties are indirectly reflected in the performance index. A nearly optimal control is designed to approximate the costate function of the Hamilton-Jacobi-Isaaca (HJI) equation by NN-based adaptive dynamic programming scheme. By algebraic inequalities and appropriate uncertainty descriptions, sufficient conditions are derived under which not only the uncertain input-delay dynamical systems can achieve asymptotic stability, but also acquire the guaranteed level of performance for regulation. Simulation example is performed to demonstrate the effectiveness of the proposed approaches.","PeriodicalId":185753,"journal":{"name":"2017 International Automatic Control Conference (CACS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACS.2017.8284252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerned with a nearly optimal control approach based on adaptive dynamic programming technique to solve robust control problem of the neutral type time-delay systems, taking parameter uncertainties and input delay into account. Based on the neural network (NN)-based adaptive dynamic programming and Lyapunov-Razumikhin theorems, the robust control design problem can be equivalently transformed into a nearly optimal control problem, and the amount of matched uncertainties are indirectly reflected in the performance index. A nearly optimal control is designed to approximate the costate function of the Hamilton-Jacobi-Isaaca (HJI) equation by NN-based adaptive dynamic programming scheme. By algebraic inequalities and appropriate uncertainty descriptions, sufficient conditions are derived under which not only the uncertain input-delay dynamical systems can achieve asymptotic stability, but also acquire the guaranteed level of performance for regulation. Simulation example is performed to demonstrate the effectiveness of the proposed approaches.
基于自适应动态规划的不确定输入时滞系统近最优控制方法
针对中性型时滞系统的鲁棒控制问题,研究了一种基于自适应动态规划技术的近最优控制方法,同时考虑了参数不确定性和输入时滞。基于神经网络的自适应动态规划和Lyapunov-Razumikhin定理,将鲁棒控制设计问题等效转化为近最优控制问题,匹配不确定性的数量间接反映在性能指标中。采用基于神经网络的自适应动态规划方法,设计了近似于Hamilton-Jacobi-Isaaca (HJI)方程的协态函数的近最优控制。通过代数不等式和适当的不确定性描述,导出了不确定输入时滞动力系统既能达到渐近稳定,又能获得保证的调节性能水平的充分条件。仿真实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信