{"title":"A Blind Source Separation Approach Based on Normalized Convex Perimeter","authors":"Liu Yang, Hang Zhang, Yang Cai, Liming Hu","doi":"10.1109/ICCChinaW.2018.8674470","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of blind source separation for both independent and dependent sources. Signals in wireless communication system usually own a bounded nature, in view of this observation, a method based on bounded component analysis (BCA) for communication signals separation is proposed. The normalized convex perimeter is adopted as the contrast function and the algorithm is further optimized by a gradient decent algorithm. Experimental results show that the proposed algorithm outperforms the existent BCA algorithms and obtains superior performance over the state of art independent component analysis (ICA)-based algorithms for a small number of samples in high SNR scenarios.","PeriodicalId":201746,"journal":{"name":"2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChinaW.2018.8674470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the problem of blind source separation for both independent and dependent sources. Signals in wireless communication system usually own a bounded nature, in view of this observation, a method based on bounded component analysis (BCA) for communication signals separation is proposed. The normalized convex perimeter is adopted as the contrast function and the algorithm is further optimized by a gradient decent algorithm. Experimental results show that the proposed algorithm outperforms the existent BCA algorithms and obtains superior performance over the state of art independent component analysis (ICA)-based algorithms for a small number of samples in high SNR scenarios.