Bogdan Nicolae, J. Bresnahan, K. Keahey, Gabriel Antoniu
{"title":"Going back and forth: efficient multideployment and multisnapshotting on clouds","authors":"Bogdan Nicolae, J. Bresnahan, K. Keahey, Gabriel Antoniu","doi":"10.1145/1996130.1996152","DOIUrl":null,"url":null,"abstract":"Infrastructure as a Service (IaaS) cloud computing has revolutionized the way we think of acquiring resources by introducing a simple change: allowing users to lease computational resources from the cloud provider's datacenter for a short time by deploying virtual machines (VMs) on these resources. This new model raises new challenges in the design and development of IaaS middleware. One of those challenges is the need to deploy a large number (hundreds or even thousands) of VM instances simultaneously. Once the VM instances are deployed, another challenge is to simultaneously take a snapshot of many images and transfer them to persistent storage to support management tasks, such as suspend-resume and migration. With datacenters growing rapidly and configurations becoming heterogeneous, it is important to enable efficient concurrent deployment and snapshotting that are at the same time hypervisor independent and ensure a maximum compatibility with different configurations. This paper addresses these challenges by proposing a virtual file system specifically optimized for virtual machine image storage. It is based on a lazy transfer scheme coupled with object versioning that handles snapshotting transparently in a hypervisor-independent fashion, ensuring high portability for different configurations. Large-scale experiments on hundreds of nodes demonstrate excellent performance results: speedup for concurrent VM deployments ranges from a factor of 2 up to 25, with a reduction in bandwidth utilization of as much as 90%.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1996130.1996152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Infrastructure as a Service (IaaS) cloud computing has revolutionized the way we think of acquiring resources by introducing a simple change: allowing users to lease computational resources from the cloud provider's datacenter for a short time by deploying virtual machines (VMs) on these resources. This new model raises new challenges in the design and development of IaaS middleware. One of those challenges is the need to deploy a large number (hundreds or even thousands) of VM instances simultaneously. Once the VM instances are deployed, another challenge is to simultaneously take a snapshot of many images and transfer them to persistent storage to support management tasks, such as suspend-resume and migration. With datacenters growing rapidly and configurations becoming heterogeneous, it is important to enable efficient concurrent deployment and snapshotting that are at the same time hypervisor independent and ensure a maximum compatibility with different configurations. This paper addresses these challenges by proposing a virtual file system specifically optimized for virtual machine image storage. It is based on a lazy transfer scheme coupled with object versioning that handles snapshotting transparently in a hypervisor-independent fashion, ensuring high portability for different configurations. Large-scale experiments on hundreds of nodes demonstrate excellent performance results: speedup for concurrent VM deployments ranges from a factor of 2 up to 25, with a reduction in bandwidth utilization of as much as 90%.