{"title":"On the Average Number of Edges in Theta Graphs","authors":"Pat Morin, S. Verdonschot","doi":"10.1137/1.9781611973204.12","DOIUrl":null,"url":null,"abstract":"Theta graphs are important geometric graphs that have many applications, including wireless networking, motion planning, real-time animation, and minimum-spanning tree construction. We give closed form expressions for the average degree of theta graphs of a homogeneous Poisson point process over the plane. We then show that essentially the same bounds---with vanishing error terms---hold for theta graphs of finite sets of points that are uniformly distributed in a square. Finally, we show that the number of edges in a theta graph of points uniformly distributed in a square is concentrated around its expected value.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973204.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Theta graphs are important geometric graphs that have many applications, including wireless networking, motion planning, real-time animation, and minimum-spanning tree construction. We give closed form expressions for the average degree of theta graphs of a homogeneous Poisson point process over the plane. We then show that essentially the same bounds---with vanishing error terms---hold for theta graphs of finite sets of points that are uniformly distributed in a square. Finally, we show that the number of edges in a theta graph of points uniformly distributed in a square is concentrated around its expected value.