One-step Local Feature Extraction using CNN

Yunpeng Zhou, Zhangqing Zhu, Bo Xin
{"title":"One-step Local Feature Extraction using CNN","authors":"Yunpeng Zhou, Zhangqing Zhu, Bo Xin","doi":"10.1109/ICNSC48988.2020.9238094","DOIUrl":null,"url":null,"abstract":"We propose a one-step Local Feature Extraction Network framework to solve the sparse feature matching problem. In our network, we use raw camera data and the Structure from Motion (SfM) algorithm to restore the corresponding relationships of the different feature map. Our network combines the detector and descriptor as one step to build an end-to-end Local Feature Extraction network. At the same time, the whole process is differentiable and we train our network by the loss of feature map. Finally, we train our network on indoor datasets and prove its accuracy and rapidity advantage over other methods.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a one-step Local Feature Extraction Network framework to solve the sparse feature matching problem. In our network, we use raw camera data and the Structure from Motion (SfM) algorithm to restore the corresponding relationships of the different feature map. Our network combines the detector and descriptor as one step to build an end-to-end Local Feature Extraction network. At the same time, the whole process is differentiable and we train our network by the loss of feature map. Finally, we train our network on indoor datasets and prove its accuracy and rapidity advantage over other methods.
基于CNN的一步局部特征提取
为了解决稀疏特征匹配问题,我们提出了一个一步局部特征提取网络框架。在我们的网络中,我们使用原始相机数据和运动结构(SfM)算法来恢复不同特征映射的对应关系。我们的网络将检测器和描述符作为一个步骤来构建端到端的局部特征提取网络。同时,整个过程是可微的,我们通过特征映射的损失来训练网络。最后,在室内数据集上进行了训练,证明了该方法的准确性和快速性优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信