Multimodal Neural Machine Translation for English–Assamese Pair

Sahinur Rahman Laskar, Bishwaraj Paul, Siddharth Paudwal, Pranjit Gautam, Nirmita Biswas, Partha Pakray
{"title":"Multimodal Neural Machine Translation for English–Assamese Pair","authors":"Sahinur Rahman Laskar, Bishwaraj Paul, Siddharth Paudwal, Pranjit Gautam, Nirmita Biswas, Partha Pakray","doi":"10.1109/ComPE53109.2021.9752181","DOIUrl":null,"url":null,"abstract":"Neural machine translation is a state-of-the-art approach for the automatic translation between natural languages. The multimodal concept utilizes textual and image features for improvement in low-resource neural machine translation. There is a lack of a standard multimodal corpus for the English–Assamese low-resource pair. We present a multimodal corpus which is suitable for multimodal translation task of English–Assamese pair. The English–Assamese multimodal corpus is used to implement multimodal neural machine translation models for English-to-Assamese translation and vice-versa. The comparative results of automatic evaluation metrics between text-only and multimodal neural machine translation show multimodal neural machine translation outperforms text-only neural machine translation.","PeriodicalId":211704,"journal":{"name":"2021 International Conference on Computational Performance Evaluation (ComPE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE53109.2021.9752181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Neural machine translation is a state-of-the-art approach for the automatic translation between natural languages. The multimodal concept utilizes textual and image features for improvement in low-resource neural machine translation. There is a lack of a standard multimodal corpus for the English–Assamese low-resource pair. We present a multimodal corpus which is suitable for multimodal translation task of English–Assamese pair. The English–Assamese multimodal corpus is used to implement multimodal neural machine translation models for English-to-Assamese translation and vice-versa. The comparative results of automatic evaluation metrics between text-only and multimodal neural machine translation show multimodal neural machine translation outperforms text-only neural machine translation.
英语-阿萨姆语对的多模态神经机器翻译
神经机器翻译是自然语言间自动翻译的一种先进方法。多模态概念利用文本和图像特征来改进低资源神经机器翻译。英语-阿萨姆语缺乏标准的多模态语料库。我们提出了一个多模态语料库,适用于英语-阿萨姆语对的多模态翻译任务。英语-阿萨姆语多模态语料库用于实现英语-阿萨姆语和英语-阿萨姆语翻译的多模态神经机器翻译模型。纯文本和多模态神经机器翻译的自动评价指标比较结果表明,多模态神经机器翻译优于纯文本神经机器翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信