Towards Edge-enabled Distributed Computing Framework for Heterogeneous Android-based Devices

Yongtao Yao, B. Liu, Yiwei Zhao, Weisong Shi
{"title":"Towards Edge-enabled Distributed Computing Framework for Heterogeneous Android-based Devices","authors":"Yongtao Yao, B. Liu, Yiwei Zhao, Weisong Shi","doi":"10.1109/SEC54971.2022.00082","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an Android-based distributed computing framework for accelerating DNN inference on Android edge devices. We experimentally demonstrate that the proposed distributed framework can reduce CPU utilization by 24 % (making the the CPU utilization close to that of idle status), reduce power consumption by 59.8 % to 71.8 %, without leading to high-bandwidth througput. The proposed framework can be applied to various Android devices to enable cooperation among edge devices in a distributed computing manner, accelerate DNN inference, and enrich the functionality of Android devices to enhance user experience.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an Android-based distributed computing framework for accelerating DNN inference on Android edge devices. We experimentally demonstrate that the proposed distributed framework can reduce CPU utilization by 24 % (making the the CPU utilization close to that of idle status), reduce power consumption by 59.8 % to 71.8 %, without leading to high-bandwidth througput. The proposed framework can be applied to various Android devices to enable cooperation among edge devices in a distributed computing manner, accelerate DNN inference, and enrich the functionality of Android devices to enhance user experience.
面向异构android设备的边缘分布式计算框架
在本文中,我们提出了一个基于Android的分布式计算框架,用于在Android边缘设备上加速DNN推理。实验证明,该分布式框架在不导致高带宽吞吐量的情况下,可以将CPU利用率降低24%(使CPU利用率接近空闲状态),将功耗降低59.8%至71.8%。该框架可应用于各种Android设备,以分布式计算的方式实现边缘设备之间的协作,加速DNN推理,丰富Android设备的功能,增强用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信