A scalable eigensolver for large scale-free graphs using 2D graph partitioning

A. Yoo, A. Baker, R. Pearce, V. Henson
{"title":"A scalable eigensolver for large scale-free graphs using 2D graph partitioning","authors":"A. Yoo, A. Baker, R. Pearce, V. Henson","doi":"10.1145/2063384.2063469","DOIUrl":null,"url":null,"abstract":"Eigensolvers are important tools for analyzing and mining useful information from scale-free graphs. Such graphs are used in many applications and can be extremely large. Unfortunately, existing parallel eigensolvers do not scale well for these graphs due to the high communication overhead in the parallel matrix-vector multiplication (MatVec). We develop a MatVec algorithm based on 2D edge partitioning that significantly reduces the communication costs and embed it into a popular eigensolver library. We demonstrate that the enhanced eigensolver can attain two orders of magnitude performance improvement compared to the original on a state-of-art massively parallel machine. We illustrate the performance of the embedded MatVec by computing eigenvalues of a scale-free graph with 300 million vertices and 5 billion edges, the largest scale-free graph analyzed by any in-memory parallel eigensolver, to the best of our knowledge.","PeriodicalId":358797,"journal":{"name":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Eigensolvers are important tools for analyzing and mining useful information from scale-free graphs. Such graphs are used in many applications and can be extremely large. Unfortunately, existing parallel eigensolvers do not scale well for these graphs due to the high communication overhead in the parallel matrix-vector multiplication (MatVec). We develop a MatVec algorithm based on 2D edge partitioning that significantly reduces the communication costs and embed it into a popular eigensolver library. We demonstrate that the enhanced eigensolver can attain two orders of magnitude performance improvement compared to the original on a state-of-art massively parallel machine. We illustrate the performance of the embedded MatVec by computing eigenvalues of a scale-free graph with 300 million vertices and 5 billion edges, the largest scale-free graph analyzed by any in-memory parallel eigensolver, to the best of our knowledge.
基于二维图划分的大规模无标度图的可扩展特征解算器
特征解算器是分析和挖掘无标度图中有用信息的重要工具。这种图在许多应用程序中使用,并且可以非常大。不幸的是,由于并行矩阵向量乘法(MatVec)的高通信开销,现有的并行特征求解器不能很好地扩展这些图。我们开发了一种基于二维边缘划分的MatVec算法,该算法显著降低了通信成本,并将其嵌入到一个流行的特征求解器库中。我们证明,与最先进的大规模并行机上的原始特征求解器相比,增强的特征求解器可以获得两个数量级的性能改进。我们通过计算具有3亿个顶点和50亿个边的无标度图的特征值来说明嵌入式MatVec的性能,据我们所知,这是任何内存中并行特征求解器分析的最大的无标度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信